Perfusion of the isolated rat liver with an AAV solution that has been irradiated with light for 24 hours results in a decrease in bile flow rates and an increase in biliary GSSG concentrations, suggesting oxidant stress. Consideration should be given to protecting solutions from light in the clinical setting.
Parenteral infusion of amino acid solutions is known to produce cholestasis in experimental animal models and in the isolated perfused rat liver. To characterize the dose responsiveness and reversibility of amino acid-induced cholestasis, isolated rat livers were perfused with solutions containing 1.5, 3.0, or 6.0 g of amino acids for 1 hour and allowed to recover for 30 minutes. Perfusion of livers resulted in a rapid, dose-related decrease in bile flow (p < .0001 at doses of 3.0 and 6.0 g). When the amino acid solution was discontinued, bile flow recovered to near control rates. Infusion of taurocholate reduced the magnitude of the decrease in bile flow associated with amino acid infusion but did not prevent it. Infusion of amino acid solutions was associated with the following changes in bile: (1) dose-related increases in total free amino acid concentrations; (2) increased osmolarity; (3) increased glucose concentrations; (4) increased potassium concentrations; (5) decreased chloride concentrations; (6) increased oxygen uptake in livers not perfused with added taurocholate; and (7) increased total bile acid concentrations in livers perfused with added taurocholate. Additional investigations are needed to determine whether these associations are attributable to individual amino acids or the total metabolic load of the amino acids.
The intravenous infusion of amino acid solutions has been associated with cholestatic liver injury in hospitalized patients and in laboratory animals. In the isolated rat liver, we recently showed that the acute decrease in bile flow, previously reported by other investigators, is dose related, reversible, and associated with dose-related increases in total biliary amino acid concentrations. In the present study, we characterized the effects of graded infusions of amino acid solutions, with and without taurocholate, on biliary secretion of individual amino acids and glutathione, an important regulator of bile flow. Livers from young adult male rats were perfused with an amino acid solution for 1 hour and allowed to recover for 30 minutes. Infusion of the amino acid solution was associated with dose-related increases in biliary concentrations of most amino acids included in the amino acid solution. Infusion of amino acid solutions resulted in a decreased bile/perfusate ratio of most amino acids, which were secreted into bile in amounts approximating their calculated uptake from the infusate. The inclusion of taurocholate in the infusate was associated with lower biliary concentrations of each individual amino acid and significant decreases in biliary total, reduced, and oxidized glutathione. Further investigation of the relationship between these changes in biliary amino acids and glutathione concentrations and the cholestasis associated with infusion of amino acid solutions may provide insights into the mechanism by which amino acids induce such cholestasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.