Glucose-6-phosphate dehydrogenase (G6PD) deficiency--the most common known enzymopathy--is associated with neonatal jaundice and hemolytic anemia usually after exposure to certain infections, foods, or medications. Although G6PD-deficient alleles appear to confer a protective effect against malaria, the link with clinical protection from Plasmodium infection remains unclear. We investigated the effect of a common G6PD deficiency variant in Southeast Asia--the G6PD-Mahidol(487A) variant--on human survival related to vivax and falciparum malaria. Our results show that strong and recent positive selection has targeted the Mahidol variant over the past 1500 years. We found that the G6PD-Mahidol(487A) variant reduces vivax, but not falciparum, parasite density in humans, which indicates that Plasmodium vivax has been a driving force behind the strong selective advantage conferred by this mutation.
BackgroundStudies on human genetic factors associated with malaria have hitherto concentrated on their role in susceptibility to and protection from disease. In contrast, virtually no attention has been paid to the role of human genetics in eliciting the production of parasite transmission stages, the gametocytes, and thus enhancing the spread of disease.Methods and FindingsWe analysed four longitudinal family-based cohort studies from Senegal and Thailand followed for 2–8 years and evaluated the relative impact of the human genetic and non-genetic factors on gametocyte production in infections of Plasmodium falciparum or P. vivax. Prevalence and density of gametocyte carriage were evaluated in asymptomatic and symptomatic infections by examination of Giemsa-stained blood smears and/or RT-PCR (for falciparum in one site). A significant human genetic contribution was found to be associated with gametocyte prevalence in asymptomatic P. falciparum infections. By contrast, there was no heritability associated with the production of gametocytes for P. falciparum or P. vivax symptomatic infections. Sickle cell mutation, HbS, was associated with increased gametocyte prevalence but its contribution was small.ConclusionsThe existence of a significant human genetic contribution to gametocyte prevalence in asymptomatic infections suggests that candidate gene and genome wide association approaches may be usefully applied to explore the underlying human genetics. Prospective epidemiological studies will provide an opportunity to generate novel and perhaps more epidemiologically pertinent gametocyte data with which similar analyses can be performed and the role of human genetics in parasite transmission ascertained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.