This paper proposes "An Emergency Situation Detection System for Ambient Assisted Living (AAL)", to support elderly people and patients with chronic conditions and potential health-related emergencies to live independently. It implements an Internet of Things (IoT) network that continuously monitors the health conditions of these people. The network includes mobile phones, to transmit the data generated by the IoT sensors to the cloud server. Especially, the paper proposes the 3 rd party unknown mobile relays instead of dedicated gateways as opposed to many existing solutions for IoT healthcare applications. The wireless communication technology used to provide the connectivity between the sensor nodes and mobile relays is Bluetooth Low Energy (BLE). To establish a secure end-to-end connectivity between low power IoT sensor nodes and cloud servers, the paper proposes several techniques. After the medical data transmission to the cloud server, it is responsible for emergency detection and alert generation accordingly. The type of emergency is not limited to a specific health issue, but new emergency situations can be defined and added to the proposed system. Ultimately, the interested parties such as family members, caretakers and doctors receive these alerts. The development of a prototype of the system as a part of the work using commercial off-the-shelf devices verifies the validity of the proposing system and evaluates the performance advantage over the existing systems.
Typical wearable devices use a dedicated mobile phone as relay node to transfer the collected sensor data to a server. However, such relay nodes can be faulty or inactive due to various reasons, leading to interruptions of the communication link. To mitigate this challenge, we propose a novel security-enhanced emergency situation detection system, where 3 rd party unknown mobile relays are used instead of dedicated gateways as opposed to many existing solutions for IoT healthcare applications. The proposed underlying key agreement and authentication scheme ensures anonymity and untraceability for both sensors (wearable devices) and relay nodes, and relies on symmetric key-based operations to function under resourceconstrained environments. We have also developed a prototype of the system using commercial off-the-shelf devices to verify the proposed method's validity and evaluate the performance advantage over existing approaches. Bluetooth Low Energy (BLE) communication technology is used to connect sensor nodes (wearable devices) and mobile relays. After sending medical data to the cloud server, the relay node is responsible for emergency detection and alert generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.