Evaporation of water from extensively hydrated protons and peptides formed by electrospray ionization (ESI) has been examined for the first time by cryogenic ion mobility-mass spectrometry (IM-MS). The extent of hydration was controlled using a heated capillary inlet operated between 340 and 391 K. Cold cluster ions formed in the source region were transported into a low temperature (∼80 K) IM drift tube using an electrostatic ion guide where they were separated on the basis of size-to-charge via low-energy collisions with helium gas. The eluting IM profile was subsequently pulsed into an orthogonal time-of-flight (TOF) mass spectrometer for mass-to-charge (m/z) identification of the cluster ion species. Key parameters that influence the cluster distributions were critically examined including the inlet temperature, drift tube temperature, and IM field strength. In agreement with previous studies, our findings indicate that water evaporation is largely dependent upon the particular charge-carrying species within the cluster. IM-MS results for protonated water clusters suggest that the special stability of H(+)(H(2)O)(n) (n = 21) is attributed to the presence of a compact isomer (assigned to a clathrate cage) that falls below the trendline produced by adjacent clusters in the n = 15 to 35 size range. Peptide studies are also presented in which specific and nonspecific solvation is observed for gramicidin S [GS + 2H](2+)(H(2)O)(n) (n = 0 to ∼26) and bradykinin [BK + 2H](2+)(H(2)O)(n) (n = 0 to ∼73), respectively.
We present omniSpect, an open source web- and Matlab-based software tool for both desorption electrospray ionization (DESI) and matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI) that performs computationally intensive functions on a remote server. These functions include converting data from a variety of file formats into a common format easily manipulated in MATLAB, transforming time-series mass spectra into mass spectrometry images based on a probe spatial raster path, and multivariate analysis. OmniSpect provides an extensible suite of tools to meet the computational requirements needed for visualizing open and proprietary format MSI data.
Mass spectrometry imaging (MSI) performed under ambient conditions is a convenient and information-rich method that allows for the comprehensive mapping of chemical species throughout biological tissues with typical spatial resolution in the 40-200 μm range. Ambient MSI methods such as desorption electrospray ionization (DESI) eliminate necessary sample preparation but suffer from lower spatial resolution than laser-based and vacuum techniques. In order to take advantage of the benefits of ambient imaging and to compensate for the somewhat limited spatial resolution, a secondary orthogonal separation nested in the imaging scheme was implemented for more selective discernment of tissue features in the spectral domain. Differential mobility spectrometry (DMS), an ion mobility-based separation that selectively transmits ions based on their high-to-low electric field mobility differences, can significantly reduce background chemical interferences, allowing for increased peak capacity. In this work, DESI DM-MSI experiments on biological tissue samples such as sea algae and mouse brain tissue sections were conducted using fixed DMS compensation voltages that selectively transferred one or a class of targeted compounds. By reducing chemical noise, the signal-to-noise ratio was improved 10-fold and the image contrast was doubled, effectively increasing image quality.
The methodology for obtaining accurate ion-neutral collision cross section (Ω) values for peptides and proteins using periodic focusing ion mobility spectrometry (PF IMS) is presented. A mobility dampening factor (represented by the term α) is introduced to account for the relative increase in ion-neutral collisions in PF IMS compared to uniform field ion mobility spectrometry (UF IMS) for equivalent operating conditions. The results show that α may be easily quantified both theoretically and empirically for a specific PF IMS design operating at a given pressure based upon the charge state of the analyte. By simply incorporating an α term into traditional UF IMS expressions, accurate Ω values were obtained with excellent agreement (≤4% difference) compared to UF IMS measurements found in the current literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.