Time variation is the essential component of the context awareness. It is a beneficial way not only including time lapse but also clustering time interval for the context inference using the information from sensor mote. In this study, we proposed a novel way of clustering based multi-sensor data fusion for the context inference. In the time interval, we fused the sensed signal of each time slot, and fused again with the results of th first fusion. We could reach the enhanced context inference with assessing the segmented signal according to the time interval at the Dempster-Shafer evidence theory based multi-sensor data fusion.
Dempster-Shafer Evidence Theory is available for multi-sensor data fusion. Basic Probability Assignment is essential for multi-sensor data fusion using Dempster-Shafer Theory. In this paper, we proposed a novel method of BPA calculation with signal assessment. We took notice of the signal that reported from the sensor mote at the time slot. We assessed the variation rate of the reported signal from the terminal. The trend of variation implies significant component of the context. We calculated the variation rate of signal for reveal the relation of the variation and the context. We could reach context inference with BPA that calculated with the variation rate of signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.