Homozygous null mutation of tumor suppressor WWOX/Wwox gene leads to severe neural diseases, metabolic disorders and early death in the newborns of humans, mice and rats. WWOX is frequently downregulated in the hippocampi of patients with Alzheimer’s disease (AD). In vitro analysis revealed that knockdown of WWOX protein in neuroblastoma cells results in aggregation of TRAPPC6AΔ, TIAF1, amyloid β, and Tau in a sequential manner. Indeed, TRAPPC6AΔ and TIAF1, but not tau and amyloid β, aggregates are present in the brains of healthy mid-aged individuals. It is reasonable to assume that very slow activation of a protein aggregation cascade starts sequentially with TRAPPC6AΔ and TIAF1 aggregation at mid-ages, then caspase activation and APP de-phosphorylation and degradation, and final accumulation of amyloid β and Tau aggregates in the brains at greater than 70 years old. WWOX binds Tau-hyperphosphorylating enzymes (e.g., GSK-3β) and blocks their functions, thereby supporting neuronal survival and differentiation. As a neuronal protective hormone, 17β-estradiol (E2) binds WWOX at an NSYK motif in the C-terminal SDR (short-chain alcohol dehydrogenase/reductase) domain. In this review, we discuss how WWOX and E2 block protein aggregation during neurodegeneration, and how a 31-amino-acid zinc finger-like Zfra peptide restores memory loss in mice.
The human and mouse WWOX/Wwox gene encodes a candidate tumor suppressor WW domain-containing oxidoreductase protein. This gene is located on a common fragile site FRA16D. WWOX participates in a variety of cellular events and acts as a transducer in the many signal pathways, including TNF, chemotherapeutic drugs, UV irradiation, Wnt, TGF-β, C1q, Hyal-2, sex steroid hormones, and others. While transiently overexpressed WWOX restricts relocation of transcription factors to the nucleus for suppressing cancer survival, physiological relevance of this regard in vivo has not been confirmed. Unlike many tumor suppressor genes, mutation of WWOX is rare, raising a question whether WWOX is a driver for cancer initiation. WWOX/Wwox was initially shown to play a crucial role in neural development and in the pathogenesis of Alzheimer's disease and neuronal injury. Later on, WWOX/Wwox was shown to participate in the development of epilepsy, mental retardation, and brain developmental defects in mice, rats and humans. Up to date, most of the research and review articles have focused on the involvement of WWOX in cancer. Here, we review the role of WWOX in neural injury and neurological diseases, and provide perspectives for the WWOX-regulated neurodegeneration.
Glioblastoma (GBM) often recurs after radio-and chemotherapies leading to poor prognosis. Glioma stem-like cells (GSCs) contribute to drug resistance and recurrence. Thus, understanding cellular mechanism underlying the growth of GSCs is critical for the treatment of GBM. Here GSCs were isolated from human U87 GBM cells with magnetic-activated cell sorting (MACS) using CD133 as a marker. The CD133 + cells highly expressed sonic hedgehog (Shh) and were capable of forming tumor spheroids in vitro and tumor in vivo. Athymic mice received intracranial injection of luciferase transduced parental and CD133 + GBM cells was utilized as orthotopic GBM model. Inhibited Shh by LDE225 delayed GBM growth in vivo, and downregulated Ptch1 and Gli1. CD133 + cell proliferation was more sensitive to inhibition by LDE225 than that of CD133 − cells. Treatment with LDE225 significantly reduced CD133 +-derived tumor spheroid formation. Large membranous vacuoles appeared in the LDE225-treated cells concomitant with the conversion of LC3-I to LC3-II. In addition, LDE225-induced cell death was mitigated in the presence of autophagy inhibitor 3-methyladenine (3-MA). Tumor growth was much slower in Shh shRNA-knockdown mice than in control RNA-transfected mice. Conversely, tumor growth was faster in Shh overexpressed mice. Furthermore, combination of LDE225 and rapamycin treatment resulted in additive effect on LC3-I to LC3-II conversion and reduction in cell viability. However, LDE225 did not affect the phosphorylated level of mTOR. Similarly, amiodarone, an mTOR-independent autophagy enhancer, reduced CD133 + cell viability and tumor spheroid formation in vitro and exhibited anti-tumor activity in vivo. These results suggest that Shh inhibitor induces autophagy of CD133 + cells likely through mTOR independent pathway. Targeting Shh signal pathway may overcome chemoresistance and provide a therapeutic strategy for patients with malignant gliomas.
Despite neurosurgery following radiation and chemotherapy, residual glioblastoma (GBM) cells develop therapeutic resistance (TR) leading to recurrence. The GBM heterogeneity confers TR. Therefore, an effective strategy must target cancer stem cells (CSCs) and other malignant cancer cells. TGF-β and mesenchymal transition are the indicators for poor prognoses. The activity of aldehyde dehydrogenases (ALDHs) is a functional CSC marker. However, the interplay between TGF-β and ALDHs remains unclear. We developed radiation-resistant and radiation-temozolomide-resistant GBM models to investigate the underlying mechanisms conferring TR. Galunisertib is a drug targeting TGF-β receptors. Disulfiram (DSF) is an anti-alcoholism drug which functions by inhibiting ALDHs. The anti-tumor effects of combining DSF and Galunisertib were evaluated by in vitro cell grow, wound healing, Transwell assays, and in vivo orthotopic GBM model. Mesenchymal-like phenotype was facilitated by TGF-β in TR GBM. Additionally, TR activated ALDHs. DSF inhibited TR-induced cell migration and tumor sphere formation. However, DSF did not affect the tumor growth in vivo. Spectacularly, DSF sensitized TR GBM to Galunisertib both in vitro and in vivo. ALDH activity positively correlated with TGF-β-induced mesenchymal properties in TR GBM. CSCs and mesenchymal-like GBM cells targeted together by combining DSF and Galunisertib may be a good therapeutic strategy for recurrent GBM patients.
Complete removal of a glioblastoma multiforme (GBM), a highly malignant brain tumor, is challenging due to its infiltrative characteristics. Therefore, utilizing imaging agents such as fluorophores to increase the contrast between GBM and normal cells can help neurosurgeons to locate residual cancer cells during image guided surgery. In this work, Raman tag based labeling and imaging for GBM cells in vitro is described and evaluated. The cell membrane of a GBM adsorbs a substantial amount of functionalized Raman tags through overexpression of the epidermal growth factor receptor (EGFR) and "broadcasts" stronger pre-defined Raman signals than normal cells. The average ratio between Raman signals from a GBM cell and autofluorescence from a normal cell can be up to 15. In addition, the intensity of these images is stable under laser illuminations without suffering from the severe photo-bleaching that usually occurs in fluorescent imaging. Our results show that labeling and imaging GBM cells via robust Raman tags is a viable alternative method to distinguish them from normal cells. This Raman tag based method can be used solely or integrated into an existing fluorescence system to improve the identification of infiltrative glial tumor cells around the boundary, which will further reduce GBM recurrence. In addition, it can also be applied/extended to other types of cancer to improve the effectiveness of image guided surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.