In this paper, to improve the slow processing speed of the rule-based visible and NIR (near-infrared) image synthesis method, we present a fast image fusion method using DenseFuse, one of the CNN (convolutional neural network)-based image synthesis methods. The proposed method applies a raster scan algorithm to secure visible and NIR datasets for effective learning and presents a dataset classification method using luminance and variance. Additionally, in this paper, a method for synthesizing a feature map in a fusion layer is presented and compared with the method for synthesizing a feature map in other fusion layers. The proposed method learns the superior image quality of the rule-based image synthesis method and shows a clear synthesized image with better visibility than other existing learning-based image synthesis methods. Compared with the rule-based image synthesis method used as the target image, the proposed method has an advantage in processing speed by reducing the processing time to three times or more.
High-dynamic-range (HDR) image synthesis is a technology developed to accurately reproduce the actual scene of an image on a display by extending the dynamic range of an image. Multi-exposure fusion (MEF) technology, which synthesizes multiple low-dynamic-range (LDR) images to create an HDR image, has been developed in various ways including pixel-based, patch-based, and deep learning-based methods. Recently, methods to improve the synthesis quality of images using deep-learning-based algorithms have mainly been studied in the field of MEF. Despite the various advantages of deep learning, deep-learning-based methods have a problem in that numerous multi-exposed and ground-truth images are required for training. In this study, we propose a self-supervised learning method that generates and learns reference images based on input images during the training process. In addition, we propose a method to train a deep learning model for an MEF with multiple tasks using dynamic hyperparameters on the loss functions. It enables effective network optimization across multiple tasks and high-quality image synthesis while preserving a simple network architecture. Our learning method applied to the deep learning model shows superior synthesis results compared to other existing deep-learning-based image synthesis algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.