PurposeShock-wave lithotripsy (SWL) is accepted as the first line treatment modality for uncomplicated upper urinary tract stones; however, validated prediction models with regards to stone-free rates (SFRs) are still needed. We aimed to develop nomograms predicting SFRs after the first and within the third session of SWL. Computed tomography (CT) information was also modeled for constructing nomograms.Materials and MethodsFrom March 2006 to December 2013, 3028 patients were treated with SWL for ureter and renal stones at our three tertiary institutions. Four cohorts were constructed: Total-development, Total-validation, CT-development, and CT-validation cohorts. The nomograms were developed using multivariate logistic regression models with selected significant variables in a univariate logistic regression model. A C-index was used to assess the discrimination accuracy of nomograms and calibration plots were used to analyze the consistency of prediction.ResultsThe SFR, after the first and within the third session, was 48.3% and 68.8%, respectively. Significant variables were sex, stone location, stone number, and maximal stone diameter in the Total-development cohort, and mean Hounsfield unit (HU) and grade of hydronephrosis (HN) were additional parameters in the CT-development cohort. The C-indices were 0.712 and 0.723 for after the first and within the third session of SWL in the Total-development cohort, and 0.755 and 0.756, in the CT-development cohort, respectively. The calibration plots showed good correspondences.ConclusionsWe constructed and validated nomograms to predict SFR after SWL. To the best of our knowledge, these are the first graphical nomograms to be modeled with CT information. These may be useful for patient counseling and treatment decision-making.
Abstract. Avalanches and subaqueous debris flows are two cases of a wide range of natural hazards that have been previously modeled with non-Newtonian fluid mechanics approximating the interplay of forces associated with gravity flows of granular and solid-liquid mixtures. The complex behaviors of such flows at unsteady flow initiation (i.e., destruction of structural jamming) and flow stalling (restructuralization) imply that the representative viscositystress relationships should include hysteresis: there is no reason to expect the timescale of microstructure destruction is the same as the timescale of restructuralization. The nonNewtonian Herschel-Bulkley relationship that has been previously used in such models implies complete reversibility of the stress-strain relationship and thus cannot correctly represent unsteady phases. In contrast, a thixotropic nonNewtonian model allows representation of initial structural jamming and aging effects that provide hysteresis in the stress-strain relationship. In this study, a thixotropic model and a Herschel-Bulkley model are compared to each other and to prior laboratory experiments that are representative of an avalanche and a subaqueous debris flow. A numerical solver using a multi-material level-set method is applied to track multiple interfaces simultaneously in the simulations. The numerical results are validated with analytical solutions and available experimental data using parameters selected based on the experimental setup and without post hoc calibration. The thixotropic (time-dependent) fluid model shows reasonable agreement with all the experimental data. For most of the experimental conditions, the HerschelBulkley (time-independent) model results were similar to the thixotropic model, a critical exception being conditions with a high yield stress where the Herschel-Bulkley model did not initiate flow. These results indicate that the thixotropic relationship is promising for modeling unsteady phases of debris flows and avalanches, but there is a need for better understanding of the correct material parameters and parameters for the initial structural jamming and characteristic time of aging, which requires more detailed experimental data than presently available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.