High-throughput data such as microarrays make it possible to investigate the molecular-level mechanism of cancer more efficiently. Computational methods boost the microarray analysis by managing large and complex data systematically. However, combinatorial interactions among genes have not been considered as a unit of the analysis since previous methods mainly focus on a whole gene or a single isolated gene. Here, we introduce a molecular evolutionary algorithm called probabilistic library model (PLM). In the PLM, library elements are generated from gene combinations. An evolutionary procedure is adopted to learn the probabilistic distribution of training samples. We apply the PLM to prostate cancer microarray data. The experimental results show that the PLM classifiers perform better than conventional methods such as neural networks and decision trees in accuracy. We also examine the evolved library to find cancer-related gene combinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.