We established a panel of monoclonal antibodies (mAbs) against prion protein (PrP) by immunizing PrP gene-ablated mice with the pathogenic isoform of prion protein (PrPSc) or recombinant prion protein (rPrP). The mAbs could be divided into at least 10 groups by fine epitope analyses using mutant rPrPs and pepspot analysis. Seven linear epitopes, lying within residues 56-90, 119-127, 137-143, 143-149, 147-151, 163-169, and 219-229, were defined by seven groups of mAbs, although the remaining three groups of mAbs recognized discontinuous epitopes. We attempted to examine whether any of these epitopes are located on the accessible surface of PrPSc. However, no mAbs reacted with protease-treated PrPSc purified from scrapie-affected mice, even when PrPSc was dispersed into a detergent-lipid protein complex, to reduce the size of PrPSc aggregates. In contrast, denaturation of PrPSc by guanidine hydrochloride efficiently exposed all of the epitopes. This suggests that any epitope recognized by this panel of mAbs is buried within the PrPSc aggregates. Alternatively, if the corresponding region(s) are on the surface of PrPSc, the region(s) may be folded into conformations to which the mAbs cannot bind. The reactivity of a panel of mAb also showed that the state of PrPSc aggregation influenced the denaturation process, and the sensitivity to denaturation appeared to vary between epitopes. Our results demonstrate that this new panel of well-characterized mAbs will be valuable for studying the biochemistry and biophysics of PrP molecules as well as for the immuno-diagnosis of prion diseases.
It is well known that anti-prion protein (PrP) monoclonal antibodies (mAbs) inhibit abnormal isoform PrP (PrPSc) formation in cell culture. Additionally, passive immunization of anti-PrP mAbs protects the animals from prion infection via peripheral challenge when mAbs are administered simultaneously or soon after prion inoculation. Thus, anti-PrP mAbs are candidates for the treatment of prion diseases. However, the effects of mAbs on disease progression in the middle and late stages of the disease remain unclear. This study carried out intraventricular infusion of mAbs into prion-infected mice before and after clinical onset to assess their ability to delay disease progression. A 4-week infusion of anti-PrP mAbs initiated at 120 days post-inoculation (p.i.), which is just after clinical onset, reduced PrPSc levels to 70–80 % of those found in mice treated with a negative-control mAb. Spongiform changes, microglial activation and astrogliosis in the hippocampus and thalamus appeared milder in mice treated with anti-PrP mAbs than in those treated with a negative-control mAb. Treatment with anti-PrP mAb prolonged the survival of mice infected with Chandler or Obihiro strain when infusion was initiated at 60 days p.i., at which point PrPSc is detectable in the brain. In contrast, infusion initiated after clinical onset prolonged the survival time by about 8 % only in mice infected with the Chandler strain. Although the effects on survival varied for different prion strains, the anti-PrP mAb could partly prevent disease progression, even after clinical onset, suggesting immunotherapy as a candidate for treatment of prion diseases.
The C-terminal portion of the prion protein (PrP), corresponding to a protease-resistant core fragment of the abnormal isoform of the prion protein (PrP Sc), is essential for prion propagation. Antibodies to the C-terminal portion of PrP are known to inhibit PrP Sc accumulation in cells persistently infected with prions. Here it was shown that, in addition to monoclonal antibodies (mAbs) to the C-terminal portion of PrP, a mAb recognizing the octapeptide repeat region in the N-terminal part of PrP that is dispensable for PrP Sc formation reduced PrP Sc accumulation in cells persistently infected with prions. The 50 % effective dose was as low as~1 nM, and, regardless of their epitope specificity, the inhibitory mAbs shared the ability to bind cellular prion protein (PrP C) expressed on the cell surface. Flow cytometric analysis revealed that mAbs that bound to the cell surface during cell culture were not internalized even after their withdrawal from the growth medium. Retention of the mAb-PrP C complex on the cell surface was also confirmed by the fact that internalization was enhanced by treatment of cells with dextran sulfate. These results suggested that anti-PrP mAb antagonizes PrP Sc formation by interfering with the regular PrP C degradation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.