This study aimed to investigate the functional and physicochemical properties of yogurt, supplemented with germinated brown rice (GBR) containing γ-aminobutyric acid (GABA), during storage. GBR was produced by soaking brown rice at 30℃, and saccharified germinated brown rice (SGBR) was produced by treating brown rice with α- and β-amylase for 1 h, at 80℃ and 60℃, respectively. Yogurt was manufactured using a commercial starter (YC-X11, CHR. Hansen, Denmark) at 37℃ for 12 h. The fatty acids and GABA contents were analyzed using GC and HPLC, respectively. The fatty acids in the cereal samples consisted of oleic, linoleic, and palmitic acid. The portion of oleic acid was the highest, at 35.65% in GBR, and 32.16% in SGBR. During germination, the oleic acid content increased, whereas linolenic and palmitic acid contents from GBR tended to decrease. Although the portion of saturated fatty acids, such as stearic and myristic acid, decreased significantly (p<0.05), that of unsaturated fatty acids, such as oleic and linoleic acid, increased with an increase in supplementation of BR, GBR, or SGBR in the yogurt. The yogurt, supplemented with cereal samples, showed a tendency of an increase in the concentration of GABA with an increase in the supplementation of the cereal samples. However, yogurt supplemented with GBR showed the highest concentration of GABA, regardless of the supplementation of the cereal samples. These results indicated that yogurt supplemented with BR, GBR, or SGBR could be a promising dairy product.
In this study, quantitative analysis of major volatile flavor compounds from yogurt was conducted using headspace-solid phase microextraction (HS-SPME) GC-FID analysis technique, and the changes of volatile aroma compounds during the storage period were evaluated. The yogurt was prepared with the addition of 2% cereals, such as, white rice (WR), brown rice (BR), germinated brown rice (GBR) and saccharified germinated brown rice (SGBR). After fermentation, the products were stored at 5 o C for 15 d. The major volatile aroma compounds in yogurt, such as acetaldehyde, acetone, diacetyl and acetoin were able to be extracted using HS-SPME technique efficiently. The regression (r 2 ) value of standard curve prepared with various concentrations of individual flavor chemicals was analyzed over 0.9975, and reproducibility was acceptable to apply quantitative analysis. The analysis of volatile components of control sample during storage showed that the acetaldehyde on 0 d was 10.83 ppm, and that contents were increased to 15.67 ppm after 15 d of storage. However, addition of BR, GBR and SGBR decreased the acetaldehyde contents during storage periods. The acetone content of all treatments during storage was not significantly different. The diacetyl content of all treatments were increased during storage and the addition of SGBR showed the highest amount of diacetyl (0.84 ppm) among treatments on 15 d of storage. The acetoin content of yogurt added with grains was higher than that of control during storage. As a result, the content of volatile aroma compounds in yoghurt during storage period could be analyzed HS-SPME extraction technique effectively, and HS-SPME/GC analysis can be considered for quality control of fermented milk products. (Frank and Marth, 1988;Marshall, 1984;Rasic and Kurmann, 1978). 이러한 부산물은 발효유의 독특한 향기에 기 여를 하게 되며, 일부는 주요한 향기성분으로써 역할을 하 고, 나머지 수많은 화합물들은 전체적인 발효유의 향기에 기여한다 (Frank and Marth, 1988). 발효 중 젖산균에 의해 생성되는 carbonyl 화합물의 대표적인 물질은 acetaldehyde, diacetyl, acetoin, acetone 및 2-butanone 등이 있으며 (Frank and Marth, 1988;Marshall, 1984;Rasic and Kurmann, 1978), acetaldehyde와 diacetyl, 그리고 acetoin이 발효유에 서 중요한 향기성분으로 알려져 있고, 이 중 acetaldehyde 함량이 향기에 미치는 영향이 가장 크다 (Rasic and Kurmann, 1978
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.