3-Hydroxypropionic acid (3-HP) can be produced in microorganisms as a versatile platform chemical. However, owing to the toxicity of the intermediate product 3-hydroxypropionaldehyde (3-HPA), the minimization of 3-HPA accumulation is critical for enhancing the productivity of 3-HP. In this study, we identified a novel aldehyde dehydrogenase, GabD4 from Cupriavidus necator, and found that it possessed the highest enzyme activity toward 3-HPA reported to date. To augment the activity of GabD4, several variants were obtained by site-directed and saturation mutagenesis based on homology modeling. Escherichia coli transformed with the mutant GabD4_E209Q/E269Q showed the highest enzyme activity, which was 1.4-fold higher than that of wild type GabD4, and produced up to 71.9 g L(-1) of 3-HP with a productivity of 1.8 g L(-1) h(-1) . To the best of our knowledge, these are the highest 3-HP titer and productivity values among those reported in the literature. Additionally, our study demonstrates that GabD4 can be a key enzyme for the development of industrial 3-HP-producing microbial strains, and provides further insight into the mechanism of aldehyde dehydrogenase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.