The transition metal oxide has been recognized as one of the promising electrode materials for electrochemical capacitor application. Due to the participation of charge transfer reactions, the capacitance offered by transition metal oxide can be higher compared to double layer capacitance. The investigation on hydrous ruthenium oxide has revealed the surface redox reactions that contributed to the wide potential window shown on cyclic voltammetry curve. Although the performance of ruthenium oxide is impressive, its toxicity has limited itself from commercial application. Manganese oxide is a pseudocapacitive material behaves similar to ruthenium oxide. It consists of various oxidation states which allow the occurrence of redox reactions. It is also environmental friendly, low cost, and natural abundant. The charge storage of manganese oxide film takes into account of the redox reactions between Mn 3+ and Mn 4+ and can be accounted to two mechanisms. The first one involves the intercalation/deintercalation of electrolyte ions and/or protons upon reduction/oxidation processes. The second contributor for the charge storage is due to the surface adsorption of electrolyte ions on the electrode surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.