Large sag with a bending stiffness catenary is a subject that draws attention in the realm of fatigue analysis, estimation of suspension cable sag for bridge cable hoisting, and ocean engineering of the employment of mooring systems. However, the bending stiffness is the cause of boundary layers at the anchorage of cables, thereby finding a solution of the differential equation can be extremely difficult. Previous studies have tackled this problem with the perturbation method; yet, due to the complexity of the matching process and solution finding, the method might not be an ideal solution for engineering applications. Moreover, the finite difference method and the finite element method in numerical analysis can often be ineffective because of inappropriate parameter configuration and the drastic variation of functions in the boundary layers. Therefore, this study proposed a novel bending moment expression of a large sag catenary. The expression was derived from the sag identified using bending moment equations, and a solution was found by applying the WKB method (Wentzel-Kramers-Brillouin method) to overcome the complex problem of boundary layers. Consequently, a simple solution of various mechanical properties in a cable with bending stiffness and large sag could be obtained.
The mapping method is widely used for automatic mesh generation. This method is used in this paper to generate a mesh, which is completely controlled by the program. The user is expected to define the problem in the most simple and natural way. The concept of mesh is not required for the user at all. To accomplish this purpose, several problems need to be solved. One is to combine connecting domains with different numbers of elements. Four methods are developed and are compared in this paper. The element free concept is used by one of the methods. A polynomial boundary is established by the moving least square formulation. Therefore the nodes in neighbor areas are included to get the coefficients of this polynomial. The result is pretty good compared to the traditional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.