We evaluate Vickers hardness and true instrumented indentation test (IIT) hardness of 24 metals over a wide range of mechanical properties using just IIT parameters by taking into account the real contact morphology beneath the Vickers indenter. Correlating the conventional Vickers hardness, indentation contact morphology, and IIT parameters for the 24 metals reveals relationships between contact depths and apparent material properties. We report the conventional Vickers and true IIT hardnesses measured only from IIT contact depths; these agree well with directly measured hardnesses within AE6% for Vickers hardness and AE10% for true IIT hardness.
Understanding the property distribution in the weld zone is very important for structural safety, since deformation and fracture begin at the weakest point. However, conventional tensile tests can measure only average material properties because they require large specimens. Small-scale tests are being extensively researched to remove this limitation, among such tests, instrumented indentation test (IIT) are of great interest because of their simple procedures. Here we describe the evaluation of tensile properties using IIT and a representative stress-strain approach. The representative stressstrain method, introduced in 2008 in ISO/TR29381, directly correlates the stress and strain under the indenter to the true stress and strain of tensile testing by defining representative functions. Using this technique, we successfully estimate the yield strength and tensile strength of structural metallic materials and also obtain profiles of the weld-zone tensile properties.
Mechanical properties must be evaluated at high temperatures to predict high-temperature deformation and fracture behavior, since high-temperature properties differ greatly from those at room temperature. A high-temperature uniaxial tensile test, a representative high-temperature test, is generally used, but it has the limitation of obtaining merely the average material properties. Recently an advanced method for evaluating tensile properties has been developed: the instrumented indentation test (IIT), which simultaneously applies a load and measures displacement. Here we use instrumented indentation testing to evaluate the flow properties (yield strength, ultimate tensile strength, etc.) of heat-resistant steel at high temperature. The contact-area determination algorithm and representative stress-representative strain approach are applied for high temperatures. We compare our experimental results to those of conventional high-temperature uniaxial tensile testing to assess the high-temperature performance of the instumented indentation test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.