A pig-specific real-time PCR assay based on the mitochondrial ND5 gene was developed to detect porcine material in food and other products. To optimize the performance of assay, seven commercial TaqMan master mixes and two real-time PCR platforms (Applied Biosystems StepOnePlus and Bio-rad CFX Connect) were used to evaluate the limit of detection (LOD) as well as the PCR efficiency and specificity. The LODs and PCR efficiencies for the seven master mixes on two platforms were 0.5-5 pg/reaction and 84.96%-108.80%, respectively. Additionally, non-specific amplifications of DNA from other animal samples (human, dog, cow, and chicken) were observed for four master mixes. These results imply that the sensitivity and specificity of a real-time PCR assay may vary depending on master mix and platform used. The best combination of master mix and real-time PCR platform can accurately detect 0.5 pg porcine DNA, with a PCR efficiency of 100.49%.
In recent years, interest in halal authentication from the domestic food and cosmetics field has been growing for advances into the overseas halal market. For halal authentication, the product must not contain haram ingredients derived from pig, dog, human, GMO, etc. In this study, the presence of haram ingredients in plant extracts (carrot, oyster mushroom, and pine needle) treated with papain and bromelain and cosmetics (mask pack and cream) containing these extracts were analyzed by PCR to confirm whether these cosmetics were suitable for halal authentication. Detection limits of the PCR method that specifically detected template DNA of human, pig, dog, and GMO were 1.29×103, 1.14×103, 1.24×102 and 2.02×103 copies/tube, respectively. PCR was not inhibited by the plant extracts or cosmetic ingredients. Results of PCR for the plant extracts or cosmetics containing these extracts were all negative. This PCR method could be used to rapidly identify the presence of haram ingredients in raw materials or final products during the manufacturing process of food and cosmetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.