Most Named Entity Recognition (NER) systems use additional features like part-of-speech (POS) tags, shallow parsing, gazetteers, etc. Adding these external features to NER systems have been shown to have a positive impact. However, creating gazetteers or taggers can take a lot of time and may require extensive data cleaning. In this work instead of using these traditional features we use lexicographic features of Chinese characters. Chinese characters are composed of graphical components called radicals and these components often have some semantic indicators. We propose CNN based models that incorporate this semantic information and use them for NER. Our models show an improvement over the baseline BERT-BiLSTM-CRF model. We present one of the first studies on Chinese OntoNotes v5.0 and show an improvement of + .64 F1 score over the baseline. We present a state-of-the-art (SOTA) F1 score of 71.81 on the Weibo dataset, show a competitive improvement of + 0.72 over baseline on the ResumeNER dataset, and a SOTA F1 score of 96.49 on the MSRA dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.