This paper discusses short-term electricity-load forecasting using an extreme learning machine (ELM) with automatic knowledge representation from a given input-output data set. For this purpose, we use a Takagi-Sugeno-Kang (TSK)-based ELM to develop a systematic approach to generating if-then rules, while the conventional ELM operates without knowledge information. The TSK-ELM design includes a two-phase development. First, we generate an initial random-partition matrix and estimate cluster centers for random clustering. The obtained cluster centers are used to determine the premise parameters of fuzzy if-then rules. Next, the linear weights of the TSK fuzzy type are estimated using the least squares estimate (LSE) method. These linear weights are used as the consequent parameters in the TSK-ELM design. The experiments were performed on short-term electricity-load data for forecasting. The electricity-load data were used to forecast hourly day-ahead loads given temperature forecasts; holiday information; and historical loads from the New England ISO. In order to quantify the performance of the forecaster, we use metrics and statistical characteristics such as root mean squared error (RMSE) as well as mean absolute error (MAE), mean absolute percent error (MAPE), and R-squared, respectively. The experimental results revealed that the proposed method showed good performance when compared with a conventional ELM with four activation functions such sigmoid, sine, radial basis function, and rectified linear unit (ReLU). It possessed superior prediction performance and knowledge information and a small number of rules.
In this paper, we compare the predictive performance of the adaptive neuro-fuzzy inference system (ANFIS) models according to the input space segmentation method. The ANFIS model can be divided into four types according to the method of dividing the input space. In general, the ANFIS1 model using grid partitioning method, ANFIS2 model using subtractive clustering (SC) method, and the ANFIS3 model using fuzzy C-means (FCM) clustering method exist. In this paper, we propose the ANFIS4 model using a context-based fuzzy C-means (CFCM) clustering method. Context-based fuzzy C-means clustering is a clustering method that considers the characteristics of the output space as well as the input space. Here, the symmetric Gaussian membership functions are obtained by the clusters produced from each context in the design of the ANFIS4. In order to evaluate the performance of the ANFIS models according to the input space segmentation method, a prediction experiment was conducted using the combined cycle power plant (CCPP) data and the auto-MPG (miles per gallon) data. As a result of the prediction experiment, we confirmed that the ANFIS4 model using the proposed input space segmentation method shows better prediction performance than the ANFIS model (ANFIS1, ANFIS2, ANFIS3) using the existing input space segmentation method.
The predictive performance of different granular models (GMs) was compared and analyzed for methods that evenly divide linguistic context in information granulation-based GMs and perform flexible partitioning. GMs are defined by input and output space information transformations using context-based fuzzy C-means clustering. The input space information transformation is directly induced by the output space context. Usually, the output space context is evenly divided. In this paper, the linguistic context was flexibly divided by stochastically distributing data in the output space. Unlike most fuzzy models, this GM yielded information segmentation. Their performance is usually evaluated using the root mean square error, which utilizes the difference between the model’s output and ground truth. However, this is inadequate for the performance evaluation of information innovation-based GMs. Thus, the GM performance was compared and analyzed using the linguistic context partitioning by selecting the appropriate performance evaluation method for the GM. The method was augmented by the coverage and specificity of the GMs output as the performance index. For the GM validation, its performance was compared and analyzed using the auto MPG dataset. The GM with flexible partitioning of linguistic context performed better. Performance evaluation using the coverage and specificity of the membership function was validated.
This paper proposes an incremental granular model (IGM) based on particle swarm optimization (PSO) algorithm. An IGM is a combination of linear regression (LR) and granular model (GM) where the global part calculates the error using LR. However, traditional CFCM clustering presents some problems because the number of clusters generated in each context is the same and a fixed value is used for fuzzification coefficient. In order to solve these problems, we optimize the number of clusters and their fuzzy numbers according to the characteristics of the data, and use natural imitative optimization PSO algorithm. We further evaluate the performance of the proposed method and the existing IGM by comparing the predicted performance using the Boston housing dataset. The Boston housing dataset contains housing price information in Boston, USA, and features 13 input variables and 1 output variable. As a result of the prediction, we can confirm that the proposed PSO-IGM shows better performance than the existing IGM.
We propose an adaptive neuro-fuzzy inference system (ANFIS) with an incremental tree structure based on a context-based fuzzy C-means (CFCM) clustering process. ANFIS is a combination of a neural network with the ability to learn, adapt and compute, and a fuzzy machine with the ability to think and to reason. It has the advantages of both models. General ANFIS rule generation methods include a method employing a grid division using a membership function and a clustering method. In this study, a rule is created using CFCM clustering that considers the pattern of the output space. In addition, multiple ANFISs were designed in an incremental tree structure without using a single ANFIS. To evaluate the performance of ANFIS in an incremental tree structure based on the CFCM clustering method, a computer performance prediction experiment was conducted using a building heating-and-cooling dataset. The prediction experiment verified that the proposed CFCM-clustering-based ANFIS shows better prediction efficiency than the current grid-based and clustering-based ANFISs in the form of an incremental tree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.