Wound reepithelialization is an evolutionarily conserved process in which skin cells migrate as sheets to heal the breach and is critical to prevent infection but impaired in chronic wounds. Integrin heterodimers mediate attachment between epithelia and underlying extracellular matrix and also act in large signaling complexes. The complexity of the mammalian wound environment and evident redundancy among integrins has impeded determination of their specific contributions to reepithelialization. Taking advantage of the genetic tools and smaller number of integrins in Drosophila, we undertook a systematic in vivo analysis of integrin requirements in the reepithelialization of skin wounds in the larva. We identify αPS2-βPS and αPS3-βPS as the crucial integrin dimers and talin as the only integrin adhesion component required for reepithelialization. The integrins rapidly accumulate in a JNK-dependent manner in a few rows of cells surrounding a wound. Intriguingly, the integrins localize to the distal margin in these cells, instead of the frontal or lamellipodial distribution expected for proteins providing traction and recruit nonmuscle myosin II to the same location. These findings indicate that signaling roles of integrins may be important for epithelial polarization around wounds and lay the groundwork for using Drosophila to better understand integrin contributions to reepithelialization.
Cell-cell fusion is widely observed during development and disease, and imposes a dramatic change on participating cells. Cell fusion should be tightly controlled, but the underlying mechanism is poorly understood. Here, we found that the JAK/STAT pathway suppressed cell fusion during wound healing in the Drosophila larval epidermis, restricting cell fusion to the vicinity of the wound. In the absence of JAK/STAT signaling, a large syncytium containing a 3-fold higher number of nuclei than observed in wild-type tissue formed in wounded epidermis. The JAK/STAT ligand-encoding genes upd2 and upd3 were transcriptionally induced by wounding, and were required for suppressing excess cell fusion. JNK (also known as Basket in flies) was activated in the wound vicinity and activity peaked at ∼8 h after injury, whereas JAK/STAT signaling was activated in an adjoining concentric ring and activity peaked at a later stage. Cell fusion occurred primarily in the wound vicinity, where JAK/STAT activation was suppressed by fusion-inducing JNK signaling. JAK/ STAT signaling was both necessary and sufficient for the induction of βPS integrin (also known as Myospheroid) expression, suggesting that the suppression of cell fusion was mediated at least in part by integrin protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.