High-performance computing (HPC) uses many distributed computing resources to solve large computational science problems through parallel computation. Such an approach can reduce overall job execution time and increase the capacity of solving large-scale and complex problems. In the supercomputer, the job scheduler, the HPC’s flagship tool, is responsible for distributing and managing the resources of large systems. In this paper, we analyze the execution log of the job scheduler for a certain period of time and propose an optimization approach to reduce the idle time of jobs. In our experiment, it has been found that the main root cause of delayed job is highly related to resource waiting. The execution time of the entire job is affected and significantly delayed due to the increase in idle resources that must be ready when submitting the large-scale job. The backfilling algorithm can optimize the inefficiency of these idle resources and help to reduce the execution time of the job. Therefore, we propose the backfilling algorithm, which can be applied to the supercomputer. This experimental result shows that the overall execution time is reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.