Atmospheric deposition contributes potentially significant amounts of the nutrients iron, nitrogen, and phosphorus (via mineral dust and anthropogenic aerosols) to the oligotrophic tropical North Atlantic Ocean. Transport pathways, deposition processes, and source strengths contributing to this atmospheric flux are all highly variable in space and time. Atmospheric sampling was conducted during 28 research cruises through the eastern tropical North Atlantic (ETNA) over a 12-yr period, and a substantial dataset of measured concentrations of nutrients and trace metals in aerosol and rainfall over the region was acquired. This database was used to quantify (on a spatial and seasonal basis) the atmospheric input of ammonium, nitrate, soluble phosphorus, and soluble and total iron, aluminum, and manganese to the ETNA. The magnitude of atmospheric input varies strongly across the region, with high rainfall rates associated with the intertropical convergence zone contributing to high wet deposition fluxes in the south, particularly for soluble species. Dry deposition fluxes of species associated with mineral dust exhibited strong seasonality, with the highest fluxes associated with wintertime low-level transport of Saharan dust. Overall (wet plus dry) atmospheric inputs of soluble and total trace metals were used to estimate their soluble fractions. These also varied with season and were generally lower in the dry north than in the wet south. The ratio of ammonium plus nitrate to soluble iron in deposition to the ETNA was lower than the N:Fe requirement for algal growth in all cases, indicating the importance of the atmosphere as a source of excess iron.
Abstract. The speciation of soluble iodine and major-ion composition were determined in size-fractionated aerosols collected during the AMT21 cruise between Avonmouth, UK, and Punta Arenas, Chile, in September–November 2011. The proportions of iodine species (iodide, iodate and soluble organic iodine (SOI)) varied markedly between size fractions and with the extent to which the samples were influenced by pollutants. In general, fine mode aerosols (< 1 µm) contained higher proportions of both iodide and SOI, while iodate was the dominant component of coarse (< 1 µm) aerosols. The highest proportions of iodate were observed in aerosols that contained (alkaline) unpolluted sea spray or mineral dust. Fine mode samples with high concentrations of acidic species (e.g. non-sea-salt sulfate) contained very little iodate and elevated proportions of iodide and SOI. These results are in agreement with modelling studies that indicate that iodate can be reduced under acidic conditions and that the resulting hypoiodous acid (HOI) can react with organic matter to produce SOI and iodide. Further work that investigates the link between iodine speciation and aerosol pH directly, as well as studies on the formation and decay of organo-iodine compounds under aerosol conditions, will be necessary before the importance of this chemistry in regulating aerosol iodine speciation can be confirmed.
Iodine affects the radiative budget and the oxidative capacity of the atmosphere and is consequently involved in important climate feedbacks. A fraction of the iodine emitted by oceans ends up in aerosols, where complex halogen chemistry regulates the recycling of iodine to the gas-phase where it effectively destroys ozone. The iodine speciation and major ion composition of aerosol samples collected during four cruises in the East and West Pacific and Indian Oceans was studied to understand the influences on iodine’s gas-aerosol phase recycling. A significant inverse relationship exists between iodide (I–) and iodate (IO3–) proportions in both fine and coarse mode aerosols, with a relatively constant soluble organic iodine (SOI) fraction of 19.8% (median) for fine and coarse mode samples of all cruises combined. Consistent with previous work on the Atlantic Ocean, this work further provides observational support that IO3– reduction is attributed to aerosol acidity, which is associated to smaller aerosol particles and air masses that have been influenced by anthropogenic emissions. Significant correlations are found between SOI and I–, which supports hypotheses that SOI may be a source for I–. This data contributes to a growing observational dataset on aerosol iodine speciation and provides evidence for relatively constant proportions of iodine species in unpolluted marine aerosols. Future development in our understanding of iodine speciation depends on aerosol pH measurements and unravelling the complex composition of SOI in aerosols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.