An efficient one-pot, three-component synthesis of 2-imino-1,3-thiazolidines and 2-imino-1,3-thiazolines using ionic liquid-tethered 2-aminobenzimidazoles was reported. The protocol includes reaction of ionic liquid attached 2-aminobenzimidazoles with isothiocyanates to afford isothioureas, followed by its base induced inter and intramolecular nucleophilic displacement reactions with 1,2-dichloroethane (EDC) which results in thiazolidine ring formation. In the next to the last step, the ionic liquid support was removed by methanolysis to deliver 2-imino-1,3-thiazolidines, which were sequentially oxidized with manganese(III) triacetate to yield 2-imino-1,3-thiazolines. The salient feature of this method is the use of 1,2-dichloroethane as a synthetic equivalent for α-haloketone to avoid the use of toxic halogenating reagents.
The present article describes the design and synthesis of new biprivileged molecular scaffolds with diverse structural features. Commercially available, simple heterocyclic building blocks such as 4-fluoro-3-nitrobenzoic acid, 2-chloro-3-nitrobenzoic acid, and indoline were utilized for the synthesis of the novel heterocycles. Pictet-Spengler-type condensation was used as a key step to construct tetracyclic indolo-benzodiazepines and indolo-quinoxalines linked with substituted benzimidazoles. Analysis of single crystals of representative compounds showed that these molecular skeletons have the potential to present various substituents with distinct three-dimensional orientations.
A novel multicomponent reaction between IL-anchored 2-aminobenzoimidazoles, aldehydes, and electron-deficient dienophiles has been explored. The strategy was utilized to develop a rapid parallel synthesis for novel bis-heterocyclic skeleton of benzimidazole-linked dihydropyrimidine on an ionic liquid support. This multicomponent reaction is compatible with a wide range of substrates and furnishes the new chimeric scaffolds with high purity and excellent yields. Use of the ionic liquid as a soluble support facilitates purification by simple precipitation along with advantages like high loading capacity, homogeneous reaction conditions, and monitoring of the reaction progress by conventional NMR spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.