Reaction propagation of ethylene/oxygen and methane/oxygen mixtures in capillary tubes of 1 and 2 mm in diameters with initial pressure and temperature at ambient condition were experimentally visualized and analysed using high speed cinematography. Deflagrative flame was initiated in middle of the smooth tube, and the reaction fronts accelerated as they propagated towards the exits in the opposite directions. Lengths of the tubes investigated ranged from 0.4 to 1 m (one side), and deflagration-to-detonation transitions were observed for equivalence ratios between 0.5 and 3. The visible reaction front propagates at speeds approach Chapman-Jouguet speed for ethylene/oxygen mixture in the 1 mm and 2 mm tubes. An overshoot in propagation velocity was found during transition process. For leaner and richer mixtures beyond the detonation limits, steady deflagration wave propagation was observed. Reaction propagation in methane/oxygen mixture was also investigated. Several near-limit propagation modes were found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.