This article applies machine learning (ML) to develop a choice model on three choice alternatives related to autonomous vehicles (AV): regular vehicle (REG), private AV (PAV), and shared AV (SAV). The learned model is used to examine users’ preferences and behaviors on AV uptake by car commuters. Specifically, this study applies gradient boosting machine (GBM) to stated preference (SP) survey data (i.e., panel data). GBM notably possesses more interpretable features than other ML methods as well as high predictive performance for panel data. The prediction performance of GBM is evaluated by conducting a 5-fold cross-validation and shows around 80% accuracy. To interpret users’ behaviors, variable importance (VI) and partial dependence (PD) were measured. The results of VI indicate that trip cost, purchase cost, and subscription cost are the most influential variables in selecting an alternative. Moreover, the attitudinal variables Pro-AV Sentiment and Environmental Concern are also shown to be significant. The article also examines the sensitivity of choice by using the PD of the log-odds on selected important factors. The results inform both the modeling of transportation technology uptake and the configuration and interpretation of GBM that can be applied for policy analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.