Within the past three decades, new bacterial etiological agents of tick-borne disease have been discovered in the southeastern U.S., and the number of reported tick-borne pathogen infections has increased. In Florida, few systematic studies have been conducted to determine the presence of tick-borne bacterial pathogens. This investigation examined the distribution and presence of tick-borne bacterial pathogens in Florida. Ticks were collected by flagging at 41 field sites, spanning the climatic regions of mainland Florida. DNA was extracted individually from 1608 ticks and screened for Anaplasma, Borrelia, Ehrlichia and Rickettsia using conventional PCR and primers that amplified multiple species for each genus. PCR positive samples were Sanger sequenced. Four species of ticks were collected: Amblyomma americanum, Amblyomma maculatum, Dermacentor variabilis, and Ixodes scapularis. Within these ticks, six bacterial species were identified: Borrelia burgdorferi, Borrelia lonestari, Ehrlichia ewingii, Rickettsia amblyommatis, Rickettsia andeanae, Rickettsia parkeri, and Rickettsia endosymbionts. Pathogenic Borrelia, Ehrlichia, and Rickettsia species were all detected in the North and North-Central Florida counties; however, we found only moderate concordance between the distribution of ticks infected with pathogenic bacteria and human cases of tick-borne diseases in Florida. Given the diversity and numerous bacterial species detected in ticks in Florida, further investigations should be conducted to identify regional hotspots of tick-borne pathogens.
Background: Triatoma protracta is a triatomine found naturally throughout many regions of California and has been shown to invade human dwellings and bite residents. A man living in Mendocino County, California, reported developing anaphylactic reactions due to the bite of an “unusual bug”, which he had found in his home for several years. Methods: We conducted environmental, entomological, and clinical investigations to examine the risk for kissing bug invasion, presence of Trypanosoma cruzi, and concerns for Chagas disease at this human dwelling with triatomine invasion. Results: Home assessment revealed several risk factors for triatomine invasion, which includes pack rat infestation, above-ground wooden plank floor without a concrete foundation, canine living in the home, and lack of residual insecticide use. Triatomines were all identified as Triatoma protracta. Midgut molecular analysis of the collected triatomines revealed the detection of T. cruzi discrete typing unit I among one of the kissing bugs. Blood meal PCR-based analysis showed these triatomines had bitten humans, canine and unidentified snake species. The patient was tested for chronic Chagas disease utilizing rapid diagnostic testing and laboratory serological testing, and all were negative. Conclusions: Triatoma protracta is known to invade human dwellings in the western portions of the United States. This is the first report of T. cruzi-infected triatomines invading homes in Mendocino County, California. Triatoma protracta is a known vector responsible for autochthonous Chagas disease within the United States, and their bites can also trigger serious systemic allergic reactions, such as anaphylaxis.
Tick-borne infections are an increasing medical and veterinary concern in the southeastern United States, but there is limited understanding of how recreational greenspaces influence the hazard of pathogen transmission. This study aimed to estimate the potential human and companion animal encounter risk with different questing tick species, and the bacterial or protozoal agents they carry in recreational greenspaces. We collected ticks bimonthly along trails and designated recreational areas in 17 publicly accessible greenspaces, in and around Gainesville, Florida, USA. We collected Amblyomma americanum, Ixodes scapularis, Amblyomma maculatum, Dermacentor variabilis, Ixodes affinis, and Haemaphysalis leporispalustris. Across the six tick species collected, we detected 18 species of bacteria or protozoa within the Babesia, Borrelia, Cytauxzoon, Cryptoplasma (Allocryptoplasma), Ehrlichia, Hepatozoon, Rickettsia, and Theileria genera, including pathogens of medical or veterinary importance. While tick abundance and associated microorganism prevalence and richness were the greatest in natural habitats surrounded by forests, we found both ticks and pathogenic microorganisms in manicured groundcover. This relationship is important for public health and awareness, because it suggests that the probability of encountering an infected tick is measurable and substantial even on closely manicured turf or gravel, if the surrounding landcover is undeveloped. The presence of medically important ticks and pathogenic microorganisms in recreational greenspaces indicates that public education efforts regarding ticks and tick-borne diseases are warranted in this region of the United States.
Background Trypanosoma cruzi, a parasitic protozoan, is endemic to the Americas and the causative agent of Chagas disease in humans. In South America, opossums facilitate transmission via infected anal gland secretions in addition to transmission via triatomine vectors. In North America, the Virginia opossum is a reservoir host for the parasite with transmission routes that are not clearly defined. The unique biology of this marsupial provides the opportunity to investigate vertical transmission in this wildlife species in situ. Our objectives were to investigate alternative routes of transmission that may facilitate spillover into other species and to determine if vertical transmission was evident. Methodology/Principal findings Virginia opossums were sampled at 10 trapping locations over a 10-month period in a 5-county region of north central Florida. Peripheral blood, fecal swabs, and anal gland secretions were collected from each adult individual, and peripheral blood was collected from joey opossums. Total DNA was extracted from each collected sample type, and T. cruzi infected individuals and the infecting Discrete Typing Unit (DTU) were identified using real time PCR methods. Adult Virginia opossums (n = 112) were infected with T. cruzi (51.8%, 95% CI [42.6–60.8%]) throughout the sampled period and at each location. T. cruzi DNA was found in each of the three biological sample types. Vertical transmission of T. cruzi was inferred in one litter of mother-dependent (n = 20, 5.0%, 95% CI [0.9–23.6%]) joey opossums where 2 joeys from this same litter were rtPCR positive for T. cruzi. Conclusions/Significance We inferred vertical transmission from mother to neonate which may serve to amplify the prevalence of T. cruzi in adult Virginia opossums. T. cruzi DNA was detected in the anal gland secretions of Virginia opossums. Infected anal gland secretions suggest a possible environmental route of transmission for T. cruzi via the deposition of contaminated feces and spraint at wildlife latrines. Only DTU1 was identified in the sampled population which is consistent with human autochthonous cases in the United States.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.