Multidrug-resistance (MDR) in cancer cells often relates to the overexpression of P-glycoprotein (P-gp), resulting in increased efflux of chemotherapy from cancer cells. A clear understanding of P-gp substrate binding will lead to the development of selective P-gp inhibitors, which resensitize cancer cells to standard chemotherapy. Unfortunately, the three-dimensional structure of human P-glycoprotein has not yet been available. In this investigation, homology model of human P-gp was developed based on a recent refined structure of mouse P-gp (PDB: 4M1M). The models were further assessed by Ramachandran plot in PROCHECK, ProSA-web Z-score and QMEAN score. The results indicated that the proposed models were reliable for further binding site and docking studies. Using AutoDock-based blind docking protocol, the probable binding sites for the known substrates rhodamine B, daunorubicin, colchicine, and Hoechst 33342 were identified and in very good agreement with the available side-directed mutagenesis studies. The binding location of the cytotoxic drug vinblastine was identified and characterized. The docking result indicated that vinblastin and verapamil shared overlapping sites on P-gp, composed of residue Leu65, Met69, Ile340, Phe983, Tyr953, and Met986. This might aid in understanding how verapamil, an inhibitor of P-gp, effectively enhanced cytotoxicity of vinblastine against P-gp-mediated MDR. Our observations suggested that human P-gp model derived from 4M1M could better explain the binding of human P-gp substrates/ inhibitors. This model served as a starting point to gain knowledge of P-gp drug-binding region(s) and to identify novel P-gp inhibitors that might have a potential to overcome MDR in cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.