A variety of brush-type chiral stationary phases (CSPs) were developed using superficially porous particles (SPPs). Given their high efficiencies and relatively low back pressures, columns containing these particles were particularly advantageous for ultrafast "chiral" separations in the 4-40 s range. Further, they were used in all mobile phase modes and with high flow rates and pressures to separate over 60 pairs of enantiomers. When operating under these conditions, both instrumentation and column packing must be modified or optimized so as not to limit separation performance and quality. Further, frictional heating results in axial thermal gradients of up to 16 °C and radial temperature gradients up to 8 °C, which can produce interesting secondary effects in enantiomeric separations. It is shown that the kinetic behavior of various CSPs can differ from one another as much as they differ from the well-studied C18 reversed phase media. Three additional interesting aspects of this work are (a) the first kinetic evidence of two different chiral recognition mechanisms, (b) a demonstration of increased efficiencies at higher flow rates for specific separations, and
Sub-second liquid chromatography in very short packed beds is demonstrated as a broad proof of concept for chiral, achiral, and HILIC separations of biologically important molecules. Superficially porous particles (SPP, 2.7 μm) of different surface chemistries, namely, teicoplanin, cyclofructan, silica, and quinine, were packed in 0.5-cm-long columns for separating different classes of compounds. Several issues must be addressed to obtain the maximum performance of 0.5 cm columns with reduced plate heights of 2.6 to 3.0. Modified UHPLC hardware can be used to obtain sub-second separations provided extra-column dispersion is minimized and sufficient data acquisition rates are used. Further, hardware improvements will be needed to take full advantage of faster separations. The utility of power transform, which is already employed in certain chromatography detectors, is shown to be advantageous for sub-second chromatography. This approach could prove to be beneficial in fast screening and two-dimensional liquid chromatography.
Recent developments in fast chromatographic enantioseparations now make high throughput analysis of enantiopurity on the order of a few seconds achievable. Nevertheless, routine chromatographic determinations of enantiopurity to support stereochemical investigations in pharmaceutical research and development, synthetic chemistry and bioanalysis are still typically performed on the 5-20 min timescale, with many practitioners believing that sub-minute enantioseparations are not representative of the molecules encountered in day to day research. In this study we develop ultrafast chromatographic enantioseparations for a variety of pharmaceutically-related drugs and intermediates, showing that sub-minute resolutions are now possible in the vast majority of cases by both supercritical fluid chromatography (SFC) and reversed phase liquid chromatography (RP-LC). Examples are provided illustrating how such methods can be routinely developed and used for ultrafast high throughput analysis to support enantioselective synthesis investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.