Multifunctional cancer therapeutic nanodevices have been designed and synthesized using the poly(amidoamine) (PAMAM) dendrimer as a carrier. Partial acetylation of the generation 5 (G5) PAMAM dendrimer was utilized to neutralize a fraction of the primary amino groups, provide enhanced solubility of the dendrimer during the conjugation reaction of fluorescein isothiocyanate (FITC) (in dimethyl sulfoxide (DMSO)), and prevent nonspecific targeting interactions (in vitro and in vivo) during delivery. The remaining nonacetylated primary amino groups were utilized for conjugation of the functional molecules fluorescein isothiocyanate (FITC, an imaging agent), folic acid (FA, targets overexpressed folate receptors on specific cancer cells), and methotrexate (MTX, chemotherapeutic drug). The appropriate control nanodevices have been synthesized as well. The G5 PAMAM dendrimer molecular weight and number of primary amino groups were determined by gel permeation chromatography (GPC) and potentiometric titration for stoichiometric design of ensuing conjugation reactions. Additionally, dendrimer conjugates were characterized by multiple analytical methods including GPC, nuclear magnetic resonance spectroscopy (NMR), high performance liquid chromatography (HPLC), and UV spectroscopy. The fully characterized nanodevices can be used for the targeted delivery of chemotherapeutic and imaging agents to specific cancer cells. Here, we present a more extensive investigation of our previously reported synthesis of this material with improvements directed toward scale-up synthesis and clinical trials (Pharm. Res. 2002, 19 (9), 1310-1316).
Poly(amidoamine) (PAMAM) dendrimer-based multifunctional cancer therapeutic conjugates have been designed and synthesized. The primary amino groups on the surface of the generation 5 (G5) PAMAM dendrimer were neutralized through partial acetylation, providing enhanced solubility of the dendrimer (in conjugation of FITC (fluorescein isothiocyanate)) and preventing nonspecific targeting interactions (in vitro and in vivo) during delivery. The functional molecules fluorescein isothiocyanate (FITC, an imaging agent), folic acid (FA, targets overexpressed folate receptors on specific cancer cells), and paclitaxel (taxol, a chemotherapeutic drug) were conjugated to the remaining nonacetylated primary amino groups. The appropriate control dendrimer conjugates have been synthesized as well. Characterization of the G5 PAMAM dendrimer and its nanosize conjugates, including the molecular weight and number of primary amine groups, has been determined by multiple analytical methods such as gel permeation chromatography (GPC), nuclear magnetic resonance spectroscopy (NMR), potentiometric titration, high-performance liquid chromatography (HPLC), and UV spectroscopy. These multifunctional dendrimer conjugates have been tested in vitro for targeted delivery of chemotherapeutic and imaging agents to specific cancer cells. We present here the synthesis, characterization, and functionality of these dendrimer conjugates.
DOAC-related ICH is associated with smaller baseline hematoma volume and lesser neurologic deficit at hospital admission compared to VKA-related ICH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.