We report the fabrication of an efficient, label-free, selective and highly reproducible immunosensor with unprecedented sensitivity (femto-molar) to detect a breast cancer biomarker for early diagnostics. Mesoporous zinc oxide nanofibers (ZnOnFs) are synthesized by electrospinning technique with a fiber diameter in the range of 50-150 nm. Fragments of ZnOnFs are electrophoretically deposited on an indium tin oxide glass substrate and conjugated via covalent or electrostatic interactions with a biomarker (antiErbB2; epidermal growth factor receptor 2). Oxygen plasma treatment of the carbon doped ZnOnFs generates functional groups (-COOH, -OH, etc.) that are effective for the conjugation of anti-ErbB2. ZnOnFs without plasma treatment that conjugate via electrostatic interactions were also tested for comparison. Label-free detection of the breast cancer biomarker by this point-of-care device is achieved by an electrochemical impedance technique that has high sensitivity (7.76 kΩ µM ). This sensor is about an order of magnitude more sensitive than the best demonstrated in the literature based on different nanomaterials and about three orders of magnitude better than the ELISA standard for breast cancer biomarker detection. This proposed point-of-care cancer diagnostic offers several advantages, such as higher stability, rapid monitoring, simplicity, cost-effectiveness, etc., and should prove to be useful for the detection of other bio-and cancer markers.
This report presents a rapid, reproducible and a green biogenic approach for the biosynthesis of gold and silver nanoparticles using leaf extract of Dalbergia sissoo. The biomolecules present in the plant induced the reduction of Au 3+ and Ag + ions from HAuCl 4 and AgNO 3 respectively, which resulted in the formation of Dalbergia conjugated nanoparticles. The growth of nanoparticles was monitored by UV-vis spectrophotometer that demonstrated a peak at 545 and 425 nm corresponding to Plasmon absorbance of gold and silver nanoparticles respectively. The leaf extract was found to direct different shape and sized gold nanoparticles. Gold nanoparticles were 50-80 nm in size and their shape varied from spherical to few triangular and hexagonal polyshaped. While silver nanoparticle synthesized were spherical, in the range of 5-55 nm in size. X-ray diffraction studies corroborated that the biosynthesized nanoparticles were crystalline gold and silver. Fourier transform infrared spectroscopy analysis revealed that biomolecules were involved in the synthesis and capping of silver nanoparticles and gold nanoparticles.
New 6-arylvinyl- and 6-adamantylvinyl-substituted 1,2,4-trioxanes (13a-g and 14a,b) have been prepared and evaluated for antimalarial activity against multidrug resistant Plasmodium yoelii nigeriensis in mice by both oral and intramuscular routes. While all the 6-arylvinyl-substituted trioxanes, 13a-f, showed promising activity, none of the 6-adamantylvinyl-substituted trioxanes, 13g and 14a,b, exhibited significant activity. Trioxane, 13f, the most active compound of the series, provided 100% and 80% protection to malaria-infected mice at 48 mg/kg x 4 days and 24 mg/kg x 4 days, respectively, by oral route. In this model, beta-arteether (3) provided 100% protection at 48 mg/kg x 4 days and only 20% protection at 24 mg/kg x 4 days. Trioxane 13f also showed complete suppression of parasitaemia at 10 mg/kg x 4 days by oral route in rhesus monkeys infected with P. cynomolgi. None of these trioxanes, except 13f, showed significant activity by the intramuscular route.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.