Abiotic stresses such as salt and drought represent adverse environmental conditions that significantly damage plant growth and agricultural productivity. In this study, the mechanism of the plant growth-promoting rhizo-bacteria (PGPR)-stimulated tolerance against abiotic stresses has been explored. Results suggest that PGPR strains, Arthrobacter protophormiae (SA3) and Dietzia natronolimnaea (STR1), can facilitate salt stress tolerance in wheat crop, while Bacillus subtilis (LDR2) can provide tolerance against drought stress in wheat. These PGPR strains enhance photosynthetic efficiency under salt and drought stress conditions. Moreover, all three PGPR strains increase indole-3-acetic acid (IAA) content of wheat under salt and drought stress conditions. The SA3 and LDR2 inoculations counteracted the increase of abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylate (ACC) under both salt and drought stress conditions, whereas STR1 had no significant impact on the ABA and ACC content. The impact of PGPR inoculations on these physiological parameters were further confirmed by gene expression analysis as we observed enhanced levels of the TaCTR1 gene in SA3-, STR1- and LDR2-treated wheat seedlings as compared to uninoculated drought and salt stressed plants. PGPR inoculations enhanced expression of TaDREB2 gene encoding for a transcription factor, which has been shown to be important for improving the tolerance of plants to abiotic stress conditions. Our study suggest that PGPR confer abiotic stress tolerance in wheat by enhancing IAA content, reducing ABA/ACC content, modulating expression of a regulatory component (CTR1) of ethylene signaling pathway and DREB2 transcription factor.
Sweet basil (Ocimum basilicum) is well known for its diverse pharmacological properties and has been widely used in traditional medicine for the treatment of various ailments. Although a variety of secondary metabolites with potent biological activities are identified, our understanding of the biosynthetic pathways that produce them has remained largely incomplete. We studied transcriptional changes in sweet basil after methyl jasmonate (MeJA) treatment, which is considered an elicitor of secondary metabolites, and identified 388 candidate MeJA-responsive unique transcripts. Transcript analysis suggests that in addition to controlling its own biosynthesis and stress responses, MeJA up-regulates transcripts of the various secondary metabolic pathways, including terpenoids and phenylpropanoids/flavonoids. Furthermore, combined transcript and metabolite analysis revealed MeJA-induced biosynthesis of the medicinally important ursane-type and oleanane-type pentacyclic triterpenes. Two MeJAresponsive oxidosqualene cyclases (ObAS1 and ObAS2) that encode for 761-and 765-amino acid proteins, respectively, were identified and characterized. Functional expressions of ObAS1 and ObAS2 in Saccharomyces cerevisiae led to the production of b-amyrin and a-amyrin, the direct precursors of oleanane-type and ursane-type pentacyclic triterpenes, respectively. ObAS1 was identified as a b-amyrin synthase, whereas ObAS2 was a mixed amyrin synthase that produced both a-amyrin and b-amyrin but had a product preference for a-amyrin. Moreover, transcript and metabolite analysis shed light on the spatiotemporal regulation of pentacyclic triterpene biosynthesis in sweet basil. Taken together, these results will be helpful in elucidating the secondary metabolic pathways of sweet basil and developing metabolic engineering strategies for enhanced production of pentacyclic triterpenes.
A phytochemical study of the rhizome essential oils of four different Hedychium species was performed by means of GC and GC/MS analyses. H. ellipticum mainly contained 1,8-cineole, sabinene, and terpin-4-ol, while H. aurantiacum possessed terpin-4-ol, para-cymene, and bornyl acetate as the major entities. Similarly, trans-meta-mentha-2,8-diene and linalool were noticed in H. coronarium. Three different collections (I-III) of H. spicatum showed amazing differences in the relative contents of their essential oils, 1,8-cineole and 10-epi-gamma-eudesmol being identified as markers for samples I and II, terpin-4-ol and sabinene being the major compounds in sample III. The rhizome essential oils of the above species were studied for their antioxidant activities by different methods, including their effect on the chelating properties of Fe(2+), DPPH radical-scavenging activity, and reducing power. Antimicrobial screenings of the oils by the paper-disc method were performed against Staphylococcus aureus, Shigella flexneri, Pasteurella multocida, Escherichia coli, and Salmonella enterica enterica, and the respective minimum-inhibitory-concentration (MIC) values were determined. The rhizome essential oils from all Hedychium species exhibited moderate-to-good Fe(2+) chelating activity. H. spicatum from collection site III showed a completely different DPPH radical-scavenging profile than the samples from the other collection sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.