Introduction
The advent of COVID-19 has impinged millions of people. The increased concern of the virus spread in confined spaces due to meteorological factors has sequentially fostered the need to improve indoor air quality.
Objective
This paper aims to review control measures and preventive sustainable solutions for the future that can deliberately help in bringing down the impact of declined air quality and prevent future biological attacks from affecting the occupant’s health.
Methodology
Anontology chart is constructed based on the set objectives and review of all the possible measures to improve the indoor air quality taking into account the affecting parameters has been done.
Observations
An integrated approach considering non-pharmaceutical and engineering control measures together for a healthy indoor environment should be contemplated rather than discretizing the available solutions. Maintaining social distance by reducing occupant density and implementing a modified ventilation system with advance filters for decontamination of viral load can help in sustaining healthy indoor air quality.
Conclusion
The review paper in the main, provides a brief overview of all the improvement techniques bearing in mind thermal comfort and safety of occupants and looks for a common ground for all the technologies based on literature survey and offers recommendation for a sustainable future.
This review presents the existing state-of-the-art practices of indoor environmental quality (IEQ) in naturally ventilated school buildings and is mainly focused on the components of IEQ like thermal comfort, indoor air quality with ventilation, and visual and acoustic comfort. This article also discusses the impacts of COVID-19 on naturally ventilated school buildings, highlighting the obviousness of dynamic applications that concentrate on reducing COVID-19 effects in naturally ventilated school buildings. The importance of the concerned issues and factors are discussed in detail for future research direction. This review is a step toward the development of the IEQ standard for naturally ventilated school buildings.
The scientific literature extensively mentions the use of a solar air heater (SAH) by utilizing solar energy for heating purposes. The poor heat-transfer rate of an SAH with a flat plate is caused by developing a laminar sub-layer near the heated base plate. The plate temperatures improve significantly, resulting in losses and a decrease in performance. The passive approach entails the placement of fins/turbulators/pouring material/ribs to the surface where the boundary layer forms to disrupt it. Artificially roughened SAH for gathering and efficiently using solar radiations for thermal purposes is extensively described in the literature. This paper includes a thorough literature overview of the history, basics, roughness evolution, forms of SAH, and recent breakthroughs in thermal performance improvement techniques for SAH compiled by several researchers. This paper uses a comparative evaluation of several roughness geometries and kinds of SAH to uncover thermohydraulic performance factors that may be considered in future research to pick the optimal configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.