The tumour microenvironment consists of malignant cells, stroma, and immune cells. Prominent tumour-infiltrating lymphocytes (TILs) in breast cancer are associated with a good prognosis and are predictors of a pathological complete response (pCR) with neoadjuvant chemotherapy (NAC). The contribution of different T effector/regulatory cells and cytokines to tumour cell death with NAC requires further characterisation and was investigated in this study. Breast tumours from 33 women with large and locally advanced breast cancers undergoing NAC were immunohistochemically (intratumoural, stromal) assessed for T cell subsets and cytokine expression using labelled antibodies, employing established semiquantitative methods. Prominent levels of TILs and CD4+, CD8+, and CTLA-4+ (stromal) T cells and CD8+ : FOXP3+ ratios were associated with a significant pCR; no association was seen with FOXP3+, CTLA-4+ (intratumoural), and PD-1+ T cells. NAC significantly reduced CD4+, FOXP3+, CTLA-4+ (stromal) (concurrently blood FOXP3+, CTLA-4+ Tregs), and PD-1+ T cells; no reduction was seen with CD8+ and CTLA-4+ (intratumoural) T cells. High post-NAC tumour levels of FOXP3+ T cells, IL-10, and IL-17 were associated with a failed pCR. Our study has characterised further the contribution of T effector/regulatory cells and cytokines to tumour cell death with NAC.
BackgroundNK cells contribute to tumour surveillance, inhibition of growth and dissemination by cytotoxicity, secretion of cytokines and interaction with immune cells. Their precise role in human breast cancer is unclear and the effect of therapy poorly studied. The purpose of our study was to characterise NK cells in women with large (≥3 cm) and locally advanced (T3–4, N1–2, M0) breast cancers (LLABCs) undergoing neoadjuvant chemotherapy (NAC) and surgery, and to ascertain their possible contribution to a pathological complete response (pCR).MethodsWomen with LLABCs (n = 25) and healthy female donors [HFDs (n = 10)] were studied. Pathological responses in the breast were assessed using established criteria. Blood samples were collected pre and post NAC and surgery. Flow cytometry and labelled monoclonal antibodies established absolute numbers (AbNs) and percentages (%) of NK cells, and expressing granzyme B/perforin and NKG2D. In vitro NK cytotoxicity was assessed and NK cells and cytokines (IL-2, INF-γ, TGF-β) documented in tumours using immunohistochemical techniques. Data was analysed by SPSS.ResultsWomen with LLABCs had significantly reduced AbNs (160.00 ± 40.00 cells/µl) but not % of NK cells, compared with HFDs (NK: 266.78 ± 55.00 cells/µl; p = 0.020). NAC enhanced the AbN (p = 0.001) and % (p = 0.006) of NK cells in patients with good pathological responses. Granzyme B+/perforin+ cells were significantly reduced (43.41 ± 4.00%), compared with HFDs (60.26 ± 7.00%; p = 0.003). NAC increased the % in good (p = 0.006) and poor (p = 0.005) pathological responders. Pretreatment NK cytotoxicity was significantly reduced in good (37.80 ± 8.05%) and poor (22.80 ± 7.97%) responders (p = 0.001) but remained unchanged following NAC. NK-NKG2D+ cells were unaltered and unaffected by NAC; NKG2D expression was increased in patients with a pCR (p = 0.001). Surgery following NAC was not beneficial, except in those with a pCR. Tumour-infiltrating NK cells were infrequent but increased peritumourally (p = 0.005) showing a significant correlation (p = 0.004) between CD56+ cells and grade of response. Tumour cytokines had no effect.ConclusionWomen with LLABCs have inhibited blood innate immunity, variably reversed by NAC (especially with tumour pCRs), which returned to pretreatment levels following surgery. These and in situ tumour findings suggest a role for NK cells in NAC-induced breast pCR.
BackgroundHost defences play a key role in tumour growth. Some of the benefits of chemotherapy may occur through modulation of these defences. The aim of this study was to define the status of regulatory cells in women with large and locally advanced breast cancers (LLABCs) undergoing neoadjuvant chemotherapy (NAC) and surgery.MethodsBloods were collected from patients (n = 56) before, during and following NAC, and surgery. Controls (n = 10) were healthy, age-matched females donors (HFDs). Blood mononuclear cells (BMCs) were isolated and T regulatory cells (Tregs) (n = 31) determined. Absolute numbers (AbNs) of Tregs and myeloid-derived suppressor cells (MDSCs) were ascertained from whole blood (n = 25). Reverse transcriptase polymerase chain reaction analysis determined Treg mRNA (n = 16). In vitro production of Th1, Th2 and Th17 cytokines (n = 30), was documented. Patients were classified as clinical responders by magnetic resonance mammography after two cycles of NAC and as pathological responders using established criteria, following surgery.ResultsPatients with LLABCs had significantly increased circulating Tregs (≥ 6 fold AbN and percentage (%)) and MDSCs (≥ 1.5 fold AbN (p = 0.025)). Percentage of FOXP3+ Tregs in blood predicted the response of the LLABCs to subsequent NAC (p = 0.04). Post NAC blood Tregs (%) were significantly reduced in patients where tumours showed a good pathological response to NAC (p = 0.05). Blood MDSCs (granulocytic, monocytic) were significantly reduced in all patients, irrespective of the pathological tumour response to chemotherapy. NAC followed by surgery failed to restore blood Tregs to normal levels. MDSCs, however, were reduced to or below normal levels by NAC alone. Invitro Th1 profile (IL-1β, IL-2, INF-γ, TNF-α) was significantly reduced (p ≤ 0.009), whilst Th2 (IL-4, IL-5) was significantly enhanced (P ≤ 0.004). Th1 and Th2 (IL-5) were unaffected by NAC and surgery. IL-17A was significantly increased (p ≤ 0.023) but unaffected by chemotherapy and surgery.ConclusionWomen with LLABCs have abnormal blood regulatory cell levels (Tregs and MDSCs) and cytokine profiles (Th1, Th2, Th17). NAC followed by surgery failed to abolish the abnormal Treg and Th profiles. There was a significant correlation between the circulatory levels of Tregs and the pathological response of the breast cancers to NAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.