Handling electronic health records from the Internet of Medical Things is one of the most challenging research areas as it consists of sensitive information, which targets attackers. Also, dealing with modern healthcare systems is highly complex and expensive, requiring much secured storage space. However, blockchain technology can mitigate these problems through improved health record management. The proposed work develops a scalable, lightweight framework based on blockchain technology to improve COVID‐19 data security, scalability and patient privacy. Initially, the COVID‐19 related data records are hashed using the enhanced Merkle tree data structure. The hashed values are encrypted by lattice based cryptography with a Homomorphic proxy re‐encryption scheme in which the input data are secured. After completing the encryption process, the blockchain uses inter planetary file system to store secured information. Finally, the Proof of Work concept is utilized to validate the security of the input COVID based data records. The proposed work's experimental setup is performed using the Python tool. The performance metrics like encryption time, re‐encryption time, decryption time, overall processing time, and latency prove the efficacy of the proposed schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.