Pedestrians' acceptance of automated vehicles (AVs) depends on their trust in the AVs. We developed a model of pedestrians' trust in AVs based on AV driving behavior and traffic signal presence. To empirically verify this model, we conducted a human-subject study with 30 participants in a virtual reality environment. The study manipulated two factors: AV driving behavior (defensive, normal, and aggressive) and the crosswalk type (signalized and unsignalized crossing). Results indicate that pedestrians' trust in AVs was influenced by AV driving behavior as well as the presence of a signal light. In addition, the impact of the AV's driving behavior on trust in the AV depended on the presence of a signal light. There were also strong correlations between trust in AVs and certain observable trusting behaviors such as pedestrian gaze at certain areas/objects, pedestrian distance to collision, and pedestrian jaywalking time. We also present implications for design and future research.
Autonomous vehicles (AVs) have the potential to improve road safety. Trust in AVs, especially among pedestrians, is vital to alleviate public skepticism. Yet much of the research has focused on trust between the AV and its driver/passengers. To address this shortcoming, we examined the interactions between AVs and pedestrians using uncertainty reduction theory (URT). We empirically verified this model with a user study in an immersive virtual reality environment (IVE). The study manipulated two factors: AV driving behavior (defensive, normal and aggressive) and the traffic situation (signalized and unsignalized). Results suggest that the impact of aggressive driving on trust in AVs depends on the type of crosswalk. At signalized crosswalks the AV's driving behavior had little impact on trust, but at unsignalized crosswalks the AV's driving behavior was a major determinant of trust. Our findings shed new insights on trust between AVs and pedestrians.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.