The effect of the orientation of the porphyrin sensitizer onto the TiO2 surface on the performance of dye-sensitized solar cells (DSSCs) is reported. Free-base and zinc porphyrins bearing a carboxyl anchoring group at the para, meta, or ortho positions of one of the meso-phenyl rings were synthesized for application in Grätzel-type photoelectrochemical cells. The remainder of the meso-phenyl rings was substituted with alkyl chains of different length to visualize any aggregation effects. Absorption and fluorescence studies were performed to characterize and observe spectral coverage of the thirteen newly synthesized porphyrin derivatives. Photoelectrochemical studies were performed after immobilization of porphyrins onto nanocrystalline TiO2 and compared with DSSC constructed using N719 dye as reference. The performance of DSSCs with the porphyrin anchoring at the para or meta position were found to greatly exceed those with the anchoring group in the ortho position. Additionally, cells constructed using zinc porphyrin derivatives outperformed the free-base porphyrin analogs. Better dye regeneration efficiency for the zinc porphyrin derivatives compared to their free-base porphyrin analogs, and for the meta and para derivatives over the ortho derivatives was evaluated from electrochemical impedance spectroscopy studies. Femtosecond transient absorption spectroscopy studies were performed to probe the kinetics of charge injection and charge recombination with respect to the orientation of porphyrin macrocycle on TiO2 surface. The ortho porphyrin derivative with an almost flat orientation to the TiO2 surface revealed fast charge recombination and suggested occurrence of through-space charge transfer. The overall structure-performance trends observed for the present porphyrin DSSCs have been rationalized based on spectral, electrochemical, electrochemical impedance spectroscopy, and transient spectroscopy results.
Please cite this article as: Chandra B. KC, Francis D'Souza, Design and photochemical study of supramolecular donor-acceptor systems assembled via metal-ligand axial coordination, Coordination Chemistry Reviews (2016), http://dx.doi.org/
Novel photosynthetic reaction center model compounds of the type donor2 -donor1 -acceptor, composed of phenothiazine, BF2 -chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X-ray structures of three of the phenothiazine-BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N-substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C-substituted analogue. The geometry and electronic structures were obtained by B3LYP/6-31G(dp) calculations (for H, B, N, and O) and B3LYP/6-31G(df) calculations (for S) in vacuum, followed by a single-point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO-1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy-level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ-BODIPY(.+) -C60 (.-) ; subsequent hole shift resulted in PTZ(.+) -BODIPY-C60 (.-) charge-separated species. The return of the charge-separated species was found to be solvent dependent. In nonpolar solvents the PTZ(.+) -BODIPY-C60 (.-) species populated the (3) C60 * prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The (1) BODIPY* generated radical ion-pair in these triads persisted for few nanoseconds due to electron transfer/hole-shift mechanism.
A novel donor-acceptor pentad featuring subphthalocyanine and fullerene as the primary electron donor and acceptor, and three phenothiazine entities as secondary hole transferring agents, have been newly synthesized and characterized as an photosynthetic reaction center model compound. Occurrences of ultrafast photoinduced electron transfer (PET) and slower charge recombination are witnessed in the pentad from the femtosecond and nanosecond transient absorption studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.