Melanoma is one of the four major types of skin cancers caused by malignant growth in the melanocyte cells. It is the rarest one, accounting to only 1% of all skin cancer cases. However, it is the deadliest among all the skin cancer types. Owing to its rarity, efficient diagnosis of the disease becomes rather difficult. Here, a deep depthwise separable residual convolutional algorithm is introduced to perform binary melanoma classification on a dermoscopic skin lesion image dataset. Prior to training the model with the dataset noise removal from the images using non‐local means filter is performed followed by enhancement using contrast‐limited adaptive histogram equilisation over discrete wavelet transform algorithm. Images are fed to the model as multi‐channel image matrices with channels chosen across multiple color spaces based on their ability to optimize the performance of the model. Proper lesion detection and classification ability of the model are tested by monitoring the gradient weighted class activation maps and saliency maps, respectively. Dynamic effectiveness of the model is shown through its performance in multiple skin lesion image datasets. The proposed model achieved an ACC of 99.50% on international skin imaging collaboration (ISIC), 96.77% on PH2, 94.44% on DermIS and 95.23% on MED‐NODE datasets.
Invasive ductal carcinoma (IDC), which is also sometimes known as the infiltrating ductal carcinoma, is the most regular form of breast cancer. It accounts to about 80% of all breast cancers. According to American Cancer Society [1], more than 180, 000 women in the United States are diagnosed with invasive breast cancer each year. The survival rate associated with this form of cancer is about 77% to 93% depending on the stage at which they are being diagnosed. The invasiveness and the frequency of the occurrence of these disease makes it one of the difficult cancers to be diagnosed. Our proposed methodology involves diagnosing the invasive ductal carcinoma with a deep residual convolution network to classify the IDC affected histopathological images from the normal images. The dataset for the purpose used is a benchmark dataset known as the Breast Histopathology Images [2]. The microscopic RGB images are converted into a seven channel image matrix, which are then fed to the network. The proposed model produces a 99.29% accurate approach towards prediction of IDC in the histopathology images with an AUROC score of 0.9996. Classification ability of the model is tested using standard performance metrics. The following methodology has been described in the next sections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.