SUMMARYCicer arietinum L. (chickpea) is the third most important food legume crop. We have generated the draft sequence of a desi-type chickpea genome using next-generation sequencing platforms, bacterial artificial chromosome end sequences and a genetic map. The 520-Mb assembly covers 70% of the predicted 740-Mb genome length, and more than 80% of the gene space. Genome analysis predicts the presence of 27 571 genes and 210 Mb as repeat elements. The gene expression analysis performed using 274 million RNA-Seq reads identified several tissue-specific and stress-responsive genes. Although segmental duplicated blocks are observed, the chickpea genome does not exhibit any indication of recent whole-genome duplication. Nucleotide diversity analysis provides an assessment of a narrow genetic base within the chickpea cultivars. We have developed a resource for genetic markers by comparing the genome sequences of one wild and three cultivated chickpea genotypes. The draft genome sequence is expected to facilitate genetic enhancement and breeding to develop improved chickpea varieties.
Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L.) seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilized to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analyzed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs), about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.
BackgroundThe F-box genes constitute one of the largest gene families in plants involved in degradation of cellular proteins. F-box proteins can recognize a wide array of substrates and regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence, among others. However, little is known about the F-box genes in the important legume crop, chickpea. The available draft genome sequence of chickpea allowed us to conduct a genome-wide survey of the F-box gene family in chickpea.ResultsA total of 285 F-box genes were identified in chickpea which were classified based on their C-terminal domain structures into 10 subfamilies. Thirteen putative novel motifs were also identified in F-box proteins with no known functional domain at their C-termini. The F-box genes were physically mapped on the 8 chickpea chromosomes and duplication events were investigated which revealed that the F-box gene family expanded largely due to tandem duplications. Phylogenetic analysis classified the chickpea F-box genes into 9 clusters. Also, maximum syntenic relationship was observed with soybean followed by Medicago truncatula, Lotus japonicus and Arabidopsis. Digital expression analysis of F-box genes in various chickpea tissues as well as under abiotic stress conditions utilizing the available chickpea transcriptome data revealed differential expression patterns with several F-box genes specifically expressing in each tissue, few of which were validated by using quantitative real-time PCR.ConclusionsThe genome-wide analysis of chickpea F-box genes provides new opportunities for characterization of candidate F-box genes and elucidation of their function in growth, development and stress responses for utilization in chickpea improvement.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1293-y) contains supplementary material, which is available to authorized users.
In the current scenario of changing climatic conditions and the rising global population, there is an urgent need to explore novel, efficient, and economical natural products for the benefit of humankind. Biosurfactants are one of the latest explored microbial synthesized biomolecules that have been used in numerous fields, including agriculture, pharmaceuticals, cosmetics, food processing, and environment-cleaning industries, as a source of raw materials, for the lubrication, wetting, foaming, emulsions formulations, and as stabilizing dispersions. The amphiphilic nature of biosurfactants have shown to be a great advantage, distributing themselves into two immiscible surfaces by reducing the interfacial surface tension and increasing the solubility of hydrophobic compounds. Furthermore, their eco-friendly nature, low or even no toxic nature, durability at higher temperatures, and ability to withstand a wide range of pH fluctuations make microbial surfactants preferable compared to their chemical counterparts. Additionally, biosurfactants can obviate the oxidation flow by eliciting antioxidant properties, antimicrobial and anticancer activities, and drug delivery systems, further broadening their applicability in the food and pharmaceutical industries. Nowadays, biosurfactants have been broadly utilized to improve the soil quality by improving the concentration of trace elements and have either been mixed with pesticides or applied singly on the plant surfaces for plant disease management. In the present review, we summarize the latest research on microbial synthesized biosurfactant compounds, the limiting factors of biosurfactant production, their application in improving soil quality and plant disease management, and their use as antioxidant or antimicrobial compounds in the pharmaceutical industries.
Cereal Chem. 83(3):284-286Five methods that employed very different testing principles and procedures for assessing gluten quality were compared for 33 North American soft red and white wheats. The three methods analyzed flour (alveograph work, lactic acid solvent retention capacity, and mixograph peak time) and two methods employed ground wheat meal (Glutomatic gluten index and SDS sedimentation volume). Compared against the normalized mean of all five assessments, the ability of the assessment methods to evaluate gluten quality decreased in the order: alveograph work, lactic acid solvent retention capacity, mixograph peak time, Glutomatic gluten index, and SDS sedimentation volume. The methods utilizing flour were substantially superior predictive methods; however, the two meal-based methods could be sufficient for early generation screening when flour is not available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.