In Drosophila, one enzyme (Drosophila tryptophan-phenylalanine hydroxylase, DTPHu) hydroxylates both tryptophan to yield 5-hydroxytryptophan, the first step in serotonin synthesis, and phenylalanine, to generate tyrosine. Analysis of the sequenced Drosophila genome identified an additional enzyme with extensive homology to mammalian tryptophan hydroxylase (TPH), which we have termed DTRHn. We have shown that DTRHn can hydroxylate tryptophan in vitro but displays differential activity relative to DTPHu when using tryptophan as a substrate. Recent studies in mice identified the presence of two TPH genes, Tph1 and Tph2, from distinct genetic loci. Tph1 represents the non-neuronal TPH gene, and Tph2 is expressed exclusively in the brain. In this article, we show that DTRHn is neuronal in expression and function and thus represents the Drosophila homologue of Tph2. Using a DTRHn-null mutation, we show that diminished neuronal serotonin affects locomotor, olfactory and feeding behaviors, as well as heart rate. We also show that DTPHu functions in vivo as a phenylalanine hydroxylase in addition to its role as the peripheral TPH in Drosophila, and is critical for non-neuronal developmental events.
Annotation of the sequenced Drosophila genome suggested the presence of an additional enzyme with extensive homology to mammalian tryptophan hydroxylase, which we have termed DTRH. In this work, we show that enzymatic analyses of the putative DTRH enzyme expressed in Escherichia coli confirm that it acts as a tryptophan hydroxylase but can also hydroxylate phenylalanine, in vitro. Building upon the knowledge gained from the work in mice and zebrafish, it is possible to hypothesize that DTRH may be primarily neuronal in function and expression, and DTPH, which has been previously shown to have phenylalanine hydroxylation as its primary role, may be the peripheral tryptophan hydroxylase in Drosophila. The experiments presented in this report also show that DTRH is similar to DTPH in that it exhibits differential hydroxylase activity based on substrate. When DTRH uses tryptophan as a substrate, substrate inhibition, catecholamine inhibition, and decreased tryptophan hydroxylase activity in the presence of serotonin synthesis inhibitors are observed. When DTRH uses phenylalanine as a substrate, end product inhibition, increased phenylalanine hydroxylase activity after phosphorylation by cAMP-dependent protein kinase, and a decrease in phenylalanine hydroxylase activity in the presence of the serotonin synthesis inhibitor, alpha-methyl-(DL)-tryptophan are observed. These experiments suggest that the presence of distinct tryptophan hydroxylase enzymes may be evolutionarily conserved and serve as an ancient mechanism to appropriately regulate the production of serotonin in its target tissues.
In Drosophila melanogaster, serotonin (5-hydroxytryptamine, 5-HT) is required for both very early non-neuronal developmental events, and in the CNS as a neurotransmitter to modulate behavior. 5-HT is synthesized, at least in part, by the actions of Drosophila tryptophan-phenylalanine hydroxylase (DTPH), a dual function enzyme that hydroxylates both phenylalanine and tryptophan. DTPH is expressed in numerous tissues as well as dopaminergic and serotonergic neurons, but it does not necessarily function as both enzymes in these tissues. Deficiencies in DTPH could affect the production of dopamine and serotonin, and thus dopaminergic and serotonergic signaling pathways. In this paper, we show that DTPH exhibits differential hydroxylase activity based solely on substrate. When DTPH uses phenylalanine as a substrate, regulatory control (end product inhibition, decreased PAH activity following phosphorylation, catecholamine inhibition) is observed that is not seen when the enzyme uses tryptophan as a substrate. These studies suggest that regulation of DTPH enzymatic activity occurs, at least in part, through the actions of its substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.