As the supply voltage is reducing with feature size, SRAM cell design is going through severe stability issues. The issue becomes worse due to increased variability in below sub-100 nm technology. In this paper, we present a highly stable 2-port 8T SRAM cell for high speed application in 65 nm technology. The proposed design provides high stability under simultaneous read/write disturbed access without reducing the I cell . The cell characteristic is extensively examined under random variation. The dynamic read noise margin is improved by 95% over conventional dual port SRAM. The zero-precharge sensing and virtual ground scheme reduce read path leakage current by 95% over conventional high precharge 2-port SRAM cell. The cell current is improved by 52% over conventional design. Finally, an 8 Kb bit-interleaved 2-stage pipelined SRAM architecture is presented using proposed cell. The 2-stage pipeline architecture provides data transfer bandwidth of 3.1 GB/s. Area-efficient 2-stage decoder layout helps to avoid pseudo read problem in unselected cells without sacrificing memory access time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.