Recently, it has been shown that heme binds to Aβ peptides which may play a major role in Alzheimer's disease (AD). This study illustrates that Aβ peptides can bind both Cu and heme cofactors at the same time. Both cofactors have unique spectroscopic and electrochemical features which are unaffected in the presence of the other, implying that they are electronically, chemically, and electrochemically uncoupled. These data clearly indicate that Cu cannot bind to three histidine residues simultaneously in Cu-Aβ complexes as previously proposed, since one of the histidines is involved in binding heme. The heme-Aβ and the heme-Cu-Aβ peptide complexes function as peroxidases. Interestingly, the Cu-Aβ complex also exhibits peroxidase activity, which may have significant implications in AD. Both Cu(+)-Aβ and heme (Fe(2+))-Aβ complexes reduce O(2) to H(2)O(2) quantitatively. Only one of the two electrons that are required for the reduction of O(2) to H(2)O(2) is derived from the reduced metal site, while the Tyr(10) residue of the native Aβ peptide donates the second electron. This Tyr(10) residue, the source of electron for the generation of partially reduced oxygen species (PROS, e.g., H(2)O(2)) is absent in rodents, which do not get affected by AD. When both heme and Cu are bound to the Aβ peptides, which is likely to happen physiologically, the amount of toxic PROS generated is maximum, implying that heme-Cu-Aβ complexes could potentially be most toxic for AD.
CONSPECTUS: Redox active iron is utilized in biology for various electron transfer and catalytic reactions essential for life, yet this same chemistry mediates the formation of partially reduced oxygen species (PROS). Oxidative stress derived from the iron accumulated in the amyloid plaques originating from amyloid β (Aβ) peptides and neurofibrillary tangles derived from hyperphosphorylated tau proteins has been implicated in the pathogenesis of Alzheimer's disease (AD). Altered heme homeostasis leading to dysregulation of expression of heme proteins and heme deposits in the amyloid plaques are characteristic of the AD brain. However, the pathogenic significance of heme in neurodegeneration in AD has been unappreciated due to the lack of detailed understanding of the chemistry of the interaction of heme and Aβ peptides. As a result, the biochemistry and biophysics of heme complexes of Aβ peptides (heme−Aβ) remained largely unexplored. In this Account, we discuss the active site environment of heme bound Aβ complexes, which involves three amino acid residues unique in mammalian Aβ (Arg5, Tyr10, and His13) and missing in Aβ from rodents, which do not get affected by AD. The histidine residue binds heme, while the arginine and the tyrosine act as key second sphere residues of the heme−Aβ active site that play a crucial role in its reactivity. Generation of PROS, enhanced peroxidase activity, and oxidation of neurotransmitters such as serotonin (5-HT) are all found to be catalyzed by heme−Aβ in in vitro assays, and these reactivities can potentially be linked to the observed neuropathologies in AD brain. Association of Cu with heme−Aβ leads to the formation of heme−Cu−Aβ. The heme−Cu−Aβ complex produces a greater amount of PROS than reduced heme−Aβ or Cu−Aβ alone. Nitric oxide (NO), a signaling molecule, is found to ameliorate the detrimental effects of heme−Aβ and Cu bound heme−Aβ complexes by detaching heme from the heme−Aβ complex and releasing it into the environment solution. Heme−Aβ complexes show fast electron transfer with oxidized cytochrome c and rapid heme transfer with apomyoglobin and aponeuroglobin. NO, cytochrome c, and apoglobins can all lead to reduction in PROS generated by reduced heme−Aβ. Synthetic analogues of heme, offering a hydrophobic distal environment, have been used to trap oxygen bound intermediates, which provides insight into the mechanism of PROS generation by reduced heme−Aβ. Artificial constructs of Aβ on nonbiological platforms are used not only to stabilize metastable and physiologically relevant large and small amyloid aggregates but also to monitor the interaction of various drug candidates with heme and Cu bound Aβ aggregates, representing a tractable avenue for testing therapeutic agents targeting metals and cofactors in AD.
Compound I is an active oxidant responsible for the peroxidase activity of heme–Aβ and can cause oxidative degradation of neurotransmitters like serotonin, a marker of Alzheimer's disease.
Recent evidence has established the colocalization of amyloid-rich plaques and heme-rich deposits in the human cerebral cortex as a common postmortem feature in Alzheimer's disease (AD). The amyloid β (Aβ) peptides have been shown to bind heme, and the resultant heme-Aβ complexes can generate toxic partially reduced oxygen species (PROS) and exhibit peroxidase activity. The heme-Aβ active site exhibits a concentration-dependent equilibrium between a high-spin mono-His-bound species similar to a peroxidase-type active site and a bis-His-bound six-coordinate low-spin species similar to that of a cytochrome b type active site. The ν(Fe-His) (241 cm(-1)) vibration has been identified in the high-spin heme-Aβ active site by resonance Raman spectroscopy. The formation of the low-spin heme-Aβ species is promoted by the His14 and noncoordinating second-sphere Arg5 residues. The high-spin state produces more PROS than the low-spin species. Nonbiological constructs modeling different forms of Aβ (oligomers, fibrils, etc.) suggest that the detrimental high-spin state is likely to dominate under most physiological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.