Abstract:Altitudinal gradients provide tractable, replicated systems in which to study changes in species richness and community composition over relatively short distances. Previously, richness was often assumed to follow a monotonic decline with altitude, but recent meta-analyses show that more complex patterns, including mid-altitude richness peaks, are also prevalent in birds. In this study, we used point counts to survey birds at multiple altitudes on three mountains on the island of Borneo in Sundaland, an area for which quantitative analyses of avian altitudinal distribution are unavailable. In total we conducted 1088 point counts and collected associated habitat data at 527 locations to estimate species richness by altitude on Mt Mulu (2376 m), Mt Pueh (1550 m) and Mt Topap Oso (1450 m). On Mulu, the only mountain with an intact habitat gradient, bird species richness peaks at 600 m. Richness appeared to peak at 600 m on Totap Oso as well, but on Pueh it peaked several hundred metres higher. The richness peak on Mulu differs from that predicted by null models and is instead caused by the overlap of distinct lowland and montane avifaunas, supporting the faunal overlap hypothesis. This finding provides further evidence that a lack of coincidence between peak turnover and peak richness is not sufficient evidence to rule out faunal overlap as a causal factor.
Aim Physiological tolerances and biotic interactions along habitat gradients are thought to influence species occurrence. Distributional differences caused by such forces are particularly noticeable on tropical mountains, where high species turnover along elevational gradients occurs over relatively short distances and elevational distributions of particular species can shift among mountains. Such shifts are interpreted as evidence of the importance of spatial variation in interspecific competition and habitat or climatic gradients. To assess the relative importance of competition and compression of habitat and climatic zones in setting range limits, we examined differences in elevational ranges of forest bird species among four Bornean mountains with distinct features. Location Bornean mountains Kinabalu, Mulu, Pueh and Topap Oso. Taxon Rain forest bird communities along elevational gradients. Methods We surveyed the elevational ranges of rain forest birds on four mountains in Borneo to test which environmental variables—habitat zone compression or presence of likely competitors—best predicted differences in elevational ranges of species among mountains. For this purpose, we used two complementary tests: a comparison of elevational range limits between pairs of mountains, and linear mixed models with naïve occupancy as the response variable. Results We found that lowland species occur higher in elevation on two small mountains compared to Mt. Mulu. This result is inconsistent with the expectation that distributions of habitats are elevationally compressed on small mountains, but is consistent with the hypothesis that a reduction in competition (likely diffuse) on short mountains, which largely lack montane specialist species, allows lowland species to occur higher in elevation. The relative influence of competition changes with elevation, and the correlation between lower range limits of montane species and the distribution of their competitors was weaker than in lowland species. Main conclusions These findings provide support for the importance of biotic interactions in setting elevational range limits of tropical bird species, although abiotic gradients explain the majority of distribution patterns. Thus, models predicting range shifts under climate change scenarios must include not only climatic variables, as is currently most common, but also information on potentially resulting changes in species interactions, especially for lowland species.
There is a lack of information on how the Endangered Bornean orang-utan Pongo pygmaeus morio moves through its environment. Here we report on a camera-trapping study carried out over 2.5 years to investigate the orang-utan's terrestrial behaviour in Wehea Forest, East Kalimantan, Indonesia. We set 41 camera trap stations in an area of secondary forest, 36 in recently logged forest immediately adjacent to Wehea Forest, and 20 in an area of primary forest in the heart of Wehea Forest. A combined sampling effort of 28,485 trap nights yielded 296 independent captures of orang-utans. Of the three study sites, orang-utans were most terrestrial in recently logged forest, which may be only partially explained by breaks in the canopy as a result of logging activity. However, orang-utans were also terrestrial in primary forest, where there was a closed canopy and ample opportunity for moving through the trees. Our results indicate that orang-utans may be more terrestrial than previously thought and demonstrate opportunistic behaviour when moving through their environment, including using newly constructed logging roads for locomotion, possibly indicating some degree of resilience to human disturbance. This finding is important because of the potential role of sustainably logged forests for orang-utan conservation.
Penelitian ini bertujuan untuk mengidentifikasi pohon inang epifit (porofit) pada hutan bekas tebangan setelah 6 tahun pembalakan seluas 12 hektar di Hutan Penelitian Malinau (MRF-CIFOR) pada hutan dataran rendah DAS Malinau. Pohon inang epifit di hutan bekas tebangan ditemukan 50 pohon per hektar, yang terdiri dari 162 spesies dalam 42 suku dengan 484 pohon (79.9%) berdiameter 20-51 cm. Pohon inang dari family Dipterokarpa di temukan paling banyak di hutan bekas tebangan (± 50%). Shorea parvifolia Dyer. merupakan pohon inang paling banyak ditemukan (34 pohon). Kata kunci: pohon inang epifit, Dipterokarpa, hutan bekas tebangan, hutan dataran rendah, Daerah Aliran Sungai
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.