Rheumatoid arthritis (RA) is an autoimmune, chronic systemic inflammatory disorder. The long-term use of currently available drugs for the treatment of RA has many potential side effects. Natural phytonutrients may serve as alternative strategies for the safe and effective treatment of RA, and curcuminoids have been used in Ayurvedic medicine for the treatment of inflammatory conditions for centuries. In this study, a novel, highly bioavailable form of curcumin in a completely natural turmeric matrix was evaluated for its ability to improve the clinical symptoms of RA. A randomized, double-blind, placebo-controlled, three-arm, parallel-group study was conducted to evaluate the comparative efficacy of two different doses of curcumin with that of a placebo in active RA patients. Twelve patients in each group received placebo, 250 or 500 mg of the curcumin product twice daily for 90 days. The responses of the patients were assessed using the American College of Rheumatology (ACR) response, visual analog scale (VAS), C-reactive protein (CRP), Disease Activity Score 28 (DAS28), erythrocyte sedimentation rate (ESR), and rheumatoid factor (RF) values. RA patients who received the curcumin product at both low and high doses reported statistically significant changes in their clinical symptoms at the end of the study. These observations were confirmed by significant changes in ESR, CPR, and RF values in patients receiving the study product compared to baseline and placebo. The results indicate that this novel curcumin in a turmeric matrix acts as an analgesic and anti-inflammatory agent for the management of RA at a dose as low as 250 mg twice daily as evidenced by significant improvement in the ESR, CRP, VAS, RF, DAS28, and ACR responses compared to placebo. Both doses of the study product were well tolerated and without side effects.
Diosmin is a flavonoid commonly found in citrus fruits, largely used as adjuvant treatment for circulatory disorders, including chronic venous insufficiency (CVI) and hemorrhoids. Following oral administration, diosmin is not directly absorbed but must first be hydrolyzed into its aglycone, diosmetin, which is then absorbed into the systemic circulation. The aim of the current cross-over clinical study was to assess the pharmacokinetic profile of µSmin® Plus, a micronized diosmin flavonoid complex standardized in diosmin and formulated with a buffering agent (tested formulation). The study compared this to unformulated micronized diosmin (reference), in 16 healthy volunteers. Plasma samples were analyzed by HPLC-MS and plasma diosmetin concentration was measured after deconjugation with β-glucuronidase. For the tested formulation area under the curve (AUC0-t), and maximum plasma and time concentration (Cmax; tmax) were found to be 298.4 ± 163.7, 50.3 ± 22.6 and 2.2 ± 2.9, respectively. AUC0-t and Cmax of the reference were 31.9 ± 100.4 and 2.4 ± 1.9, respectively. The tested formulation showed higher plasmatic concentrations of diosmetin in comparison to those obtained after the administration of unformulated micronized diosmin. The relative bioavailability was 9.4 greater for the tested formulation than in micronized diosmin. In conclusion, our data indicate that µSmin® Plus was rapidly and well absorbed into systemic circulation and may therefore be ideally suitable to deliver diosmin in human interventional trials.
Specific and sensitive ultra-high performance liquid chromatography-quadrupole time of flight-mass spectroscopy (UPLC-QTOF-MS) methods have been developed for the determination of curcuminoids and curcumin metabolites in human blood plasma. The UPLC-QTOF-MS method used a binary solvent delivery system and the chromatographic separation was performed on a C-18 (2.1 × 50 mm; 1.7 µm) column. Mass spectra were obtained on a Waters Xevo G2S Q-TOF mass spectrometer. The developed methods to characterize the pharmacokinetics of curcuminoids and curcumin metabolites in human blood plasma after an oral administration of bioavailable curcumin—Cureit™—were validated. It was found that the complete turmeric matrix enhances the concentration of tetrahydrocurcumin (THC), hexahydrocurcumin (HHC), octahydrocurcumin (OHC), curcumin-O-glucuronide (COG) and curcumin-O-sulfate (COS) in the blood plasma once the product is administrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.