Privacy and data analytics are two conflicting domains that have gained interest due to the advancements of technology in the big data era. Organizations in sectors such as finance, healthcare, and e-commerce take advantage of the data collected, to help them enable innovative decision making and analysis. What is sidelined is the fact that the collected data have associated private data of the individuals involved, and may be exploited and used for unjustified purposes. Defending privacy and performing useful analytics are two sides of the same coin, and hence achieving a good balance between these is a challenging scenario. This paper proposes an optimized differentially private deep learning mechanism that enhances the trade-off between the conflicting objectives of privacy, accuracy, and performance. The goal of this paper is to provide an optimal solution that gives a quantifiable trade-off between these contradictory objectives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.