Endometriosis is an estrogen-dependent, chronic, proinflammatory disease prevalent in 10% of women of reproductive age worldwide. Characterized by the growth of endometrium-like tissue in aberrant locations outside of the uterus, it is responsible for symptoms including chronic pelvic pain, dysmenorrhea, and subfertility that degrade quality of life of women significantly. In Canada, direct and indirect economic cost of endometriosis amounts to 1.8 billion dollars, and this is elevated to 20 billion dollars in the United States. Despite decades of research, the etiology and pathophysiology of endometriosis still remain to be elucidated. This review aims to bring together the current understanding regarding the pathogenesis of endometriosis with specific focus on mechanisms behind vascularization of the lesions and the contribution of immune factors in facilitating lesion establishment and development. The role of hormones, immune cells, and cytokine signaling is highlighted, in addition to discussing the current pharmaceutical options available for management of pain symptoms in women with endometriosis.
Interferon gamma (IFNG) is a proinflammatory cytokine secreted in the uterus during early pregnancy. It is abundantly produced by uterine natural killer cells in maternal endometrium but also by trophoblasts in some species. In normal pregnancies of mice, IFNG plays critical roles that include initiation of endometrial vasculature remodeling, angiogenesis at implantation sites, and maintenance of the decidual (maternal) component of the placenta. In livestock and in humans, deviations in these processes are thought to contribute to serious gestational complications, such as fetal loss or preeclampsia. Interferon gamma has broader roles in activation of innate and adaptive immune responses to viruses and tumors, in part through upregulating transcription of genes involved in cell cycle regulation, apoptosis, and antigen processing/presentation. Despite this, rodent and human trophoblast cells show dampened responses to IFNG that reflect the resistance of these cells to IFNG-mediated activation of major histocompatibility complex (MHC) class II transplantation antigen expression. Lack of MHC class II antigens on trophoblasts is thought to facilitate survival of the semiallogeneic conceptus in the presence of maternal lymphocytes. This review describes the dynamic roles of IFNG in successful pregnancy and briefly summarizes data on IFNG in gestational pathologies.
Prenatal mortality reaching 30% occurs during the first weeks of gestation in commercial swine. Mechanisms for this are unknown although poor uterine blood supply has been postulated. In other species, vascular endothelial growth factor, hypoxia-inducible factor 1-α, and IFN-γ regulate gestational endometrial angiogenesis. Vascular endothelial growth factor and hypoxia-inducible factor 1-α are also important for placental angiogenesis while trophoblastic expression of Fas ligand is thought to protect conceptuses against immune-mediated pregnancy loss. In this study, we document dynamic, peri-implantation differences in transcription of genes for angiogenesis, cytokine production, and apoptosis regulation in the endometrium, and laser capture microdissected endometrial lymphocytes and trophoblasts associated with healthy or viable but arresting porcine fetuses. In healthy implantation sites, endometrial gene expression levels differed between anatomic subregions and endometrial lymphocytes showed much greater transcription of angiogenic genes than trophoblasts. In arresting fetal sites, uterine lymphocytes had no angiogenic gene transcription and showed rapid elevation in transcription of proinflammatory cytokines Fas and Fas ligand while trophoblasts showed elevated transcription of IFN-γ and Fas. This model of experimentally accessible spontaneous fetal loss, involving blocked maternal angiogenesis, should prove valuable for further investigations of peri-implantation failure of normally conceived and surgically transferred embryos in many species, including the human.
Endometriosis is a chronic, inflammatory disease characterized by the growth of endometrial tissue in aberrant locations outside the uterus. Neo-angiogenesis or establishment of new blood supply is one of the fundamental requirements of endometriotic lesion survival in the peritoneal cavity. IL-17A is emerging as a potent angiogenic and pro-inflammatory cytokine involved in the pathophysiology of several chronic inflammatory diseases such as rheumatoid arthritis and psoriasis. However, sparse information is available in the context of endometriosis. In this study, we demonstrate the potential importance of IL-17A in the pathogenesis and pathophysiology of endometriosis. The data show a differential expression of IL-17A in human ectopic endometriotic lesions and matched eutopic endometrium from women with endometriosis. Importantly, surgical removal of lesions resulted in significantly reduced plasma IL-17A concentrations. Immunohistochemistry revealed localization of IL-17A primarily in the stroma of matched ectopic and eutopic tissue samples. In vitro stimulation of endometrial epithelial carcinoma cells, Ishikawa cells and human umbilical vein endothelial cells with IL-17A revealed significant increase in angiogenic (VEGF, IL-8), pro-inflammatory (IL-6, IL-1β) and chemotactic cytokines (G-CSF, CXCL12, CXCL1, CX3CL1). Furthermore, IL-17A promoted tubulogenesis of HUVECs plated on matrigel in a dose-dependent manner. Thus we provide the first evidence that endometriotic lesions produce IL-17A and that the removal of the lesion via laparoscopic surgery leads to the significant reduction in the systemic levels of IL-17A. Taken together, our data shows a likely important role of IL-17A in promoting angiogenesis and pro-inflammatory environment in the peritoneal cavity for the establishment and maintenance of endometriosis lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.