A common and costly challenge in the nascent biorefinery industry is the consistent handling and conveyance of biomass feedstock materials, which can vary widely in their chemical, physical, and mechanical properties. Solutions to cope with varying feedstock qualities will be required, including advanced process controls to adjust equipment and reject feedstocks that do not meet a quality standard. In this work, we present and evaluate methods to autonomously assess corn stover feedstock quality in real time and provide data to process controls with low-cost camera hardware. We explore the use of neural networks to classify feedstocks based on actual processing behavior and pixel matrix feature parameterization to further assess particle attributes that may explain the variable processing behavior. We used the pretrained ResNet neural network coupled with a gated recurrent unit (GRU) time-series classifier trained on our image data, resulting in binary classification of feedstock anomalies with favorable performance. The textural aspects of the image data were statistically analyzed to determine if the textural features were predictive of operational disruptions. The significant textural features were angular second moment, prominence, mean height of surface profile, mean resultant vector, shade, skewness, variation of the polar facet orientation, and direction of azimuthal facets. Expansion of these models is recommended across a wider variety of labeled feedstock images of different qualities and species to develop a more robust tool that may be deployed using low-cost cameras within biorefineries.
Recent advances in machine learning and computer vision have made it simple to manipulate a variety of images, including satellite images. Most of the commercially available satellite images go through the process of orthorectification to remove potential distortions due to terrain variations. This orthorectification process typically involves the use of rational polynomial coefficients (RPC) that geometrically remap the pixels in the original image to the rectified image. This paper proposes a new method to verify the authenticity of these orthorectified images with respect to the associated RPC metadata. The steps include calculating the Residual Discrete Fourier Transform (DFT) pattern from the image using a linear predictor based residual spectral analysis and comparing with expected residual DFT pattern using the RPC metadata associated with the image. If the metadata associated with an orthorectified image is the correct one, then both the DFT patterns should have high structural similarity. We use SSIM (Structural Similarity Index Metric) to quantify the similarity and thereby verify if the data has been tampered or not. Detailed experimental results are presented to demonstrate the high accuracy of the proposed method in detecting manipulations.<br>
Seam carving is a popular technique for content aware image retargeting. It can be used to deliberately manipulate images, for example, change the GPS locations of a building or insert/remove roads in a satellite image. This paper proposes a novel approach for detecting and localizing seams in such images. While there are methods to detect seam carving based manipulations, this is the first time that robust localization and detection of seam carving forgery is made possible. We also propose a seam localization score (SLS) metric to evaluate the effectiveness of localization. The proposed method is evaluated extensively on a large collection of images from different sources, demonstrating a high level of detection and localization performance across these datasets. The datasets curated during this work will be released to the public.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.