Although a great amount of information is available on bacteria inhabiting deep-sea sediments, the occurrence of fungi in this environment has been poorly studied and documented. We report here the occurrence of fungi in deep-sea sediments from ~5000 m depth in the Central Indian Basin
Very few studies have addressed the diversity of culturable fungi from deep-sea sediments. We are reporting here the diversity of culturable fungi in deep-sea sediments of the Central Indian Basin obtained from a depth of ∼5,000 m. A total of 16 filamentous fungi and 12 yeasts isolated from 20 sediment cores of ∼35 cm length were identified by 18S and ITS sequencing of SSU rDNA. Most of the filamentous fungi were Ascomycota, while two were Basidiomycota. Microscopic identification of sporulating cultures mostly matched either with 18S or ITS sequences but seldom with both the sequences. Phylogenetic analysis of ascomycetes using 18S sequence data grouped them into 7 clusters belonging to Aspergillus sp., Sagenomella sp., Exophiala sp., Capronia sp., Cladosporium sp., Acremonium sp. and Tritirachium sp. ITS sequence data grouped isolates into 6 clusters belonging to Aspergillus sp., uncultured member of Hypocreaceae, Exophiala sp., uncultured soil fungus, Hypocreales and Trichothecium sp. The two basidiomycete isolates were a Tilletiopsis sp. evident from 18S as well as ITS sequence data. In contrast, most of the yeast isolates belonged to Basidiomycota and only one isolate belonged to the phylum Ascomycota. Sequences of 18S as well as ITS gave matching identification of most of the yeasts. Filamentous fungi as well as the yeasts grew at 200 bar/5°C indicating their adaptations to deep-sea conditions. This is the first report on isolation of Sagenomella, Exophiala, Capronia and Tilletiopsis spp. from deep-sea sediments. This study reports on the presence of terrestrial fungi as a component of culturable fungi in deep-sea sediments.
In order to study fungal diversity in oxygen minimum zones of the Arabian Sea, we analyzed 1440 cloned small subunit rRNA gene (18S rRNA gene) sequences obtained from environmental samples using three different PCR primer sets. Restriction fragment length polymorphism (RFLP) analyses yielded 549 distinct RFLP patterns, 268 of which could be assigned to fungi (Dikarya and zygomycetes) after sequence analyses. The remaining 281 RFLP patterns represented a variety of nonfungal taxa, even when using putatively fungal-specific primers. A substantial number of fungal sequences were closely related to environmental sequences from a range of other anoxic marine habitats, but distantly related to known sequences of described fungi. Community similarity analyses suggested distinctively different structures of fungal communities from normoxic sites, seasonally anoxic sites and permanently anoxic sites, suggesting different adaptation strategies of fungal communities to prevailing oxygen conditions. Additionally, we obtained 26 fungal cultures from the study sites, most of which were closely related (>97% sequence similarity) to well-described Dikarya. This indicates that standard cultivation mainly produces more of what is already known. However, two of these cultures were highly divergent to known sequences and seem to represent novel fungal groups on high taxonomic levels. Interestingly, none of the cultured isolates is identical to any of the environmental sequences obtained. Our study demonstrates the importance of a multiple-primer approach combined with cultivation to obtain deeper insights into the true fungal diversity in environmental samples and to enable adequate intersample comparisons of fungal communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.