Here we report molecular films terminated with diazonium salts moieties at both ends which enables single-molecule contacts between gold and silicon electrodes at open circuit via a radical reaction. We show that the kinetics of film grafting is crystal-facet dependent, being more favourable on ⟨111⟩ than on ⟨100⟩, a finding that adds control over surface chemistry during the device fabrication. The impact of this spontaneous chemistry in single-molecule electronics is demonstrated using STM-break junction approaches by forming metal-single-moleculesemiconductor junctions between silicon and gold source and drain, electrodes. Au-C and Si-C molecule-electrode contacts result in single-molecule wires that are mechanically stable, with an average lifetime at room temperature of 1.1 s which is 30-400 % higher than that reported for conventional molecular junctions formed between gold electrodes using thiol and amine contact groups. The high stability enabled measuring current-voltage properties during the lifetime of the molecular junction. We show that current rectification, which is intrinsic to metal-semiconductor junctions, can be controlled when a single-molecule bridges the gap in the junction. The system changes from being a current-rectifier in the absence of molecular bridge to an ohmic contact when a single-molecule is covalently bonded to both silicon and gold electrodes. This study paves the way for the merging of the fields of single-molecule and silicon electronics.
Developing molecular circuits that can function as the active components in electrical devices is an ongoing challenge in molecular electronics. It demands mechanical stability of the single-molecule circuit while simultaneously being responsive to external stimuli mimicking the operation of conventional electronic components. Here, we report single-molecule circuits based on spiropyran derivatives that respond electrically to chemical and mechanical stimuli. The merocyanine that results from the protonation/ ring-opening of the spiropyran form showed single-molecule diode characteristics, with an average current rectification ratio of 5 at ±1 V, favoring the orientation where the positively charged end of the molecule is attached to the negative terminal of the circuit. Mechanical pulling of a single spiropyran molecule drives a switch to a more conducting merocyanine state. The mechanical switching is enabled by the strong Au−C covalent bonding between the molecule and the electrodes, which allows the tensile force delivered by the STM piezo to break the molecule at its spiropyran C−O bond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.