The Human Papillomavirus (HPV) vaccines have been widely introduced in the national immunization programs in most of the medium and high income countries following endorsement from national and international advisory bodies. HPV vaccine is unique and its introduction is challenging in many ways – it is the first vaccine developed to prevent any cancer, the vaccine is gender specific, it targets adolescent females who are difficult to reach by any health intervention programs. It is not unusual for such a vaccine to face scepticism and reservations not only from lay public but also from professionals in spite of the clinical trial results convincingly and consistently proving their efficacy and safety. Over the last few years millions of doses of the HPV vaccine have been administered round the world and the efficacy and safety data have started coming from the real life programs. A comprehensive cervical cancer control program involving HPV vaccination of the adolescent girls and screening of the adult women has been proved to be the most cost-effective approach to reduce the burden of cervical cancer. The present article discusses the justification of HPV vaccination in the backdrop of natural history of cervical cancer, the mechanism of action of the vaccines, efficacy and safety data from phase III randomized controlled trials as well as from the national immunization programs of various countries.
The Dyakov-Kontorovich criteria for spontaneous emission of acoustic waves behind shock fronts are investigated for high temperature aluminum and beryllium plasmas. To this end, the Dyakov and critical stability parameters are calculated from Rankine-Hugoniot curves using a more realistic equation of state (EOS). The cold and ionic contributions to the EOS are obtained via scaled binding energy and mean field theory, respectively. A screened hydrogenic model, including l-splitting, is used to calculate the bound electron contribution to the electronic EOS. The free electron EOS is obtained from Fermi-Dirac statistics. Predictions of the model for ionization curves and shock Hugoniot are found to be in excellent agreement with available experimental and theoretical data. It is observed that the electronic EOS has significant effect on the stability of the planar shock front. While the shock is stable for low temperatures and pressures, instability sets in as temperature rises. The basic reason is ionization of electronic shells and consequent increase in electronic specific heat. The temperatures and densities of the unstable region correspond to those where electronic shells get ionized. With the correct modeling of bound electrons, we find that shock instability for Al occurs at a compression ratio ~5.4, contrary to the value ~3 reported in the literature. Free electrons generated in the ionization process carry energy from the shock front, thereby giving rise to spontaneously emitted waves, which decay the shock front.
A mean field model for ionic free energy is developed using the scaled binding energy formula. The model is evaluated using experimental data on Hugoniot, phase diagrams, melting curves, and other thermodynamic parameters of several solids. Predictions of the model are also compared with the Debye–Gruneisen theory, which is also based on the same binding energy formula. The binding energy formulation employs just four parameters, all corresponding to ambient condition—density, bulk modulus, its pressure derivative, and cohesive energy. These are obtained either from experiments or electronic structure theory. The Debye–Gruneisen theory compares better with available data for the phase diagrams of iron, zirconium, and titanium. However, the Hugoniot and melting curves obtained using both models yield similar results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.