An Al2014–alumina (Al2O3) composite’s characteristics are significantly influenced by the reinforcement particle size variation. Therefore, this study examines the microstructure, mechanical, fractography, and wear performance of an Al2014–Al2O3p composite made using a unique two-stage stir casting method and various alumina weight fractions (9, 12, and 15 wt %). Three categories of alumina particle size are used, i.e., fine particle size (FPS, 8 μm), intermediate particle size (IPS, 53 μm), and coarse particle size (CPS, 88 μm). The shapes of the composites were characterized using scanning electron microscopy. According to scanning electron microscopic analyses of the microstructure, the FPS dispersion was more uniform than IPS and CPS, whereas CPS causes agglomeration. Additionally, the studies show that the FPS composite outperformed CPS and IPS composites in terms of mechanical characteristics and wear performance. The fractography study shows conical and equiaxed dimple failure in the Al2014 matrix and the circular cavities.
Recent environmental concern has been raised about the development of biocomposites because of their low cost, eco-friendliness, and biodegradability. Machining of polymeric composite is inevitable during assembly of structural components. In view of creating holes in structural composites, drilling is necessary and it is essential to carry out research to find the optimal machining parameters. The experimental assessment and prediction of the thrust force and torque involved in drilling composites reinforced with sheep horn are presented in this work. The matrix and sheep horn particles were combined in the right proportions before being moulded and poured into a mould, then allowed to cure at room temperature. Investigated properties included ultimate tensile strength, flexural strength, and hardness. To evaluate the quality of the hole, micrographs of the drilled hole were employed. When the mixture was optimised based on the properties, it was found that a 70:30 ratio produced the best results. Thrust force and torque of 58 N and 4.8 N-mm, respectively, were observed for sheep horn filler laminates which were drilled using the combination of 6 mm diameter, 0.1 mm/rev feed rate, and 400 rpm speed. This is by far the best among the combinations used in the experiment. Additionally, the experimental outcomes indicate that the feed rate and spindle speed are the most significant factors affecting the thrust force. Since there were minimal errors in the comparison, the central composite design modelling is consummate. Overall, the extensive experimental effort offers several options to utilise this composite material in future applications across a wide range of fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.