Darkfield and confocal laser scanning microscopy both allow for a simultaneous observation of live cells and single nanoparticles. Accordingly, a characterization of nanoparticle uptake and intracellular mobility appears possible within living cells. Single particle tracking allows to measure the size of a diffusing particle close to a cell. However, within the more complex system of a cell’s cytoplasm normal, confined or anomalous diffusion together with directed motion may occur. In this work we present a method to automatically classify and segment single trajectories into their respective motion types. Single trajectories were found to contain more than one motion type. We have trained a random forest with 9 different features. The average error over all motion types for synthetic trajectories was 7.2%. The software was successfully applied to trajectories of positive controls for normal- and constrained diffusion. Trajectories captured by nanoparticle tracking analysis served as positive control for normal diffusion. Nanoparticles inserted into a diblock copolymer membrane was used to generate constrained diffusion. Finally we segmented trajectories of diffusing (nano-)particles in V79 cells captured with both darkfield- and confocal laser scanning microscopy. The software called “TraJClassifier” is freely available as ImageJ/Fiji plugin via https://git.io/v6uz2.
Using small angle neutron scattering in combination with optical Raman spectroscopy, phase transitions in the micellar system tetradecyl-trimethylammonium bromide (TTAB) have been investigated in a wide range of temperatures, pressures and surfactant concentrations. Allowing for the sluggish kinetics of crystallisation, the phase diagram in the p-T-c space could be determined that is dominated by a pronounced two-phase region of coexisting liquid and solid phases at elevated pressures.
A systematic study of the aggregation behavior of
alkyl trimethyl ammonium bromide surfactants as a function of
concentration, temperature and alkyl chain length is presented based
on small angle neutron scattering as well as Raman scattering. The
variation of structural parameters of the micelles, their dissociation
and the conformation of surfactant molecules within the micelles are
quantitatively determined. All surfactant systems exhibit a universal
behavior if described on a renormalized temperature scale. This
finding is associated with the proximity of phase transitions into gel
and solid phases.
We report a study on particle diffusion in membranes formed from polystyrene-block-poly(2-(dimethylamino)ethyl methacrylate) (PS-b-PDMAEMA) diblock copolymers. The membranes were investigated by scanning electron microscopy and by single-particle tracking employing carboxy-functionalized polystyrene beads loaded with a fluorophore as spectroscopic probes. From the diffusion trajectories we extracted the domain size distribution of the membranes and the local diffusion coefficient of the beads as a function of the size of the beads. The single-particle tracking data revealed that the effective domain sizes of the membranes are reduced with respect to the domain sizes obtained from scanning electron microscopy, reflecting the confined diffusion of the probe particles due to interactions with the domain walls. This is corroborated by a clear correlation between the diffusion coefficient of an individual polystyrene bead and the size of the actual domain to which it is confined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.